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Abstract

A dynamic bioeconomic model that examines economically optimal stocking rate decisions while taking into account changes in
forage availability is presented. The model presented here focuses on economically optimal stocking decisions while taking into
account changes in the forage resource. The model is parameterized for a stocker operation in central Wyoming. Regardless of
the scenario analyzed, the general rule of 50% utilization is determined to be an economically sound management strategy. The
factors most heavily influencing economically optimal stocking rate decisions are forage growth rates and the Michaelis
Constant. Both grain prices and cattle prices impact financial returns yet do not directly impact optimal stocking decisions by
cattle producers.

Resumen

Se presenta un modelo bioeconómico dinámico que examina decisiones de carga animal económicamente óptimas tomando en
cuenta al mismo tiempo cambios en la disponibilidad forrajera. El modelo que aquı́ se presenta se enfoca en decisiones de carga
animal económicamente óptimas tomando en cuenta al mismo tiempo cambios en la disponibilidad forrajera. El modelo se
configuró para un establecimiento de engorde en el centro del estado de Wyoming. Independientemente del escenario analizado,
se determinó que la regla general del 50% de uso es una estrategia de manejo económicamente sólida. Los factores que ejercen
mayor influencia en la decisión de carga animal económicamente óptima son las tasas de crecimiento del forraje y la Constante
de Michaelis. Los precios de granos y del ganado ejercen un impacto en el retorno financiero, pero no influyen de modo directo
las decisiones de carga animal óptima de los productores ganaderos.
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INTRODUCTION

Given the importance of rangeland resources in the provision of
both forage for livestock grazing and ecosystem services,
determining appropriate stocking rates has both economic
and environmental consequences. Research focusing on either
biologically or economically optimal stocking rates may not
adequately address interactions between financial and environ-
mental consequences of stocking decisions (Jones and Sandland
1974; Wilson and MacLeod 1991). Izac et al. (1990) compared
biologic and economic optimal stocking rates and concluded
that often the biological optimum stocking decisions will not
coincide with an economically stable system. They have stated
that ‘‘(t)he relevance of management recommendations made
to graziers and land administrators would be increased if these
recommendations were based on an analysis of both the
economic and the ecological stability of grazing systems over
the medium to long term’’ (p. 265–266). The objective of this
paper is to examine a bioeconomic model linking economically

optimal stocking levels to rangeland health. Special attention is
given to long-term outcomes.

One of the problems with many economic modeling efforts is
that, while useful to examine potential changes in the status
quo, economic models often have finite time horizons, account
for range resources as static and fixed, and try to determine the
‘‘optimal’’ decisions given this fixed constraint. For example,
Bastian et al. (2009), Coppock et al. (2009), and Torell et al.
(2001) utilize equations to account for both animal and forage
states as a way to model the supply of and demand for available
Animal Unit Months (AUMs) in a ranch setting over a limited
time horizon (12 yr, 11 yr, and 40 yr, respectively). While these
approaches illustrate the potential economic implications of
impacted forage production and/or exclusion from public
grazing by adding constraints or limits to available forage,
the models utilized do not adequately account for the dynamic
interaction between stocking decision and evolution of the
forage resource.

Often, modeling efforts related to grazing decisions result in
different biologically and economically ‘‘optimal’’ outcomes.
This can, in part, be explained by differences in the length of
planning horizon used. Manley et al. (1997) have shown that
individual producers, when acting to maximize profit, generally
should stock at rates that are at or below moderate levels for
their study area when prices are average or below average.
However, they indicated that favorable prices can lead to
selection of higher short-term stocking rates that could reduce
the condition of the range if maintained over a long time
horizon. Hart et al. (1988) have also shown that producers
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looking to increase short-term profits should stock at rates up
to 66% higher than rates recommended by the Soil Conserva-
tion Service. However, these authors warned that these
stocking rates were likely to deteriorate the range condition
over time, and producers need to compensate for this long-term
trade-off when determining stocking rates in the short-term.

Models that address the interaction between present stocking
densities and changes in the forage resource over time offer
potential improvement over the previously mentioned econom-
ic models. While not addressing economically optimal stocking
rates, Noy-Meir (1975) used an optimal control approach to
model grazing as a predator-prey relationship, thereby focusing
on biological stability of grazing systems. Noy-Meir (1975)
forced constant herd sizes in order to determine the stability of
steady states in a grazing system. By using simple state
equations (or equations of resource change over time) to
evaluate the potential stability of grazing systems, he was able
to identify numerous general outcomes, including undergrazed
steady states, overgrazing leading to either extinction or low
biomass steady states, and the possibility of numerous potential
steady states based on various combinations of plant growth
functions and stocking density.

When considering the long-term trade-offs associated with
the grazing decision, implications of stocking remain unclear.
Pope and McBryde (1984) discuss how differences in land
managers’ optimizing behavior will affect range management.
They stated that often ecologists find economic recommenda-
tions irrational, while economists may find ecological recom-
mendations unrealistic. They went on to demonstrate that
unless the planning horizon is sufficiently long and the discount
rate utilized is sufficiently low, individual producers often stock
public rangeland at a rate that may in fact lead to range
deterioration. However, Wilson et al. (1984) stated that
‘‘(b)iologically, the optimum stocking rate varies with the
rainfall, the store of forage from the previous year, the nature
of the animal production system and safe utilization levels’’
(p. 133). These authors commented on how the economically
optimal stocking rate is lower than the stocking rate that would
maximize biological production per land area.

Torell et al. (1989) compared the results of a static and
dynamic model of rangeland use for eastern Colorado with a
150-d grazing season. They concluded that economically
optimum stocking rates over a 40-yr horizon averaged around
48% utilization of total forage over the grazing season, near the
recommended 50% forage utilization rate they cite for their
study area. They stated that producers who wish to maximize
profits should stock at a heavier rate in order to take advantage
of favorable cattle prices (while the opposite is true in years
with unfavorable prices), and that in their model, the forage
utilization rate varied due to varying cattle prices. They agreed
with Workman (1986) in that the long-run profit motive of
ranchers will not result in stocking rates that will significantly
deteriorate the range.

Torell et al. (1991) further investigated interactions of
stocking rates and range condition using a dynamic model
calibrated for eastern Colorado. They found that ranchers do
not have an economic incentive to continuously overgraze
rangelands. They ignored random weather by treating each
year as an average in terms of weather impacts on forage
production. They stated that current animal performance drives

the economic decisions and impacts on future productivity are
not as important as current implications of stocking rates. They
did note, however, that optimal stocking rates are decreased
slightly when accounting for future forage productivity. They
based this conclusion on a fixed (40-yr) planning horizon with
a fixed terminal value. Their results might have differed if they
had utilized an infinite planning horizon.

Standiford and Howitt (1993) utilized a dynamic optimal
control model to examine the economically optimal manage-
ment of rangelands in California with multiple production
possibilities (grazing, wood production, and hunting revenues).
While they modeled forage dynamics, they relied on oak
canopy and rainfall as the primary predictors of forage
production, and did not rely on standing forage as an indicator
of ecological health.

While Noy-Meir (1975) demonstrated results of given
actions and potential outcomes on range condition in a
dynamic framework, he did not incorporate a range manager’s
decision behavior. Noy-Meir (1975) offered insights into the
biological implications of stocking rates in a dynamic context,
but also stated the importance of understanding the associated
economic outcomes. Izac et al. (1990) stated the need for
grazing management systems to be able to identify a
‘‘bioeconomic’’ optimum that enables maximization of profits
while ensuring the ecological stability of a grazing system over
a long planning horizon.

The previous evidence suggests that if producers fully
incorporate the long-term benefits and costs of grazing
decisions, they will desire a stable state that ensures both
long-term rangeland health and the associated value (favorable
economic outcomes) of the grazing of such a system. Therefore,
the objective of this article is to analyze the long-term trade-offs
of grazing management decisions. We give specific attention to
management decisions that utilize the knowledge that current
grazing decisions will impact future forage production. We will
determine if producers’ decisions should be influenced by the
store of standing forage. We will also analyze how producers’
decisions in such a dynamic system can be impacted by
economic variables such as increased or decreased prices of
cattle and corn.

METHODS

In order to account for the dynamic nature of rangeland
production, a bioeconomic dynamic programming model that
builds on the physical relationships presented by Noy-Meir
(1975) is employed. The model encompasses not only animal
performance over time and the resulting stream of discounted
returns but it also incorporates how stocking decisions affect
the evolving condition of rangelands. For a more detailed
description of the biological portion of our optimal control
model, please see Noy-Meir (1975). As our model incorporates
expectations of future forage production into current period
stocking decisions, it is expected that stocking rates will be
lower in current periods to reduce impacts on future
productivity. Producers are expected to maximize the value of
land, an objective consistent with one who holds title to the
land or is assured continued transferable grazing rights to the
land.
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Noy-Meir (1975) modeled forage growth as

G(V)~cV 1{
V

Vm

� �
[1]

and animal consumption is modeled as

C~c(V)H~cm
V{Vr½ �

V{Vrð ÞzVk½ �

� �
H [2]

The forage base is then modeled to evolve over time:

dV

dt
~G{C~G Vð Þ{c Vð ÞH [3]

where c is maximum growth rate per unit of time, V is
vegetation density per unit of land, and Vm is the maximum
plant biomass for a unit of land (carrying capacity). C is total
consumption per unit of land, cm is the level of daily
consumption associated with satiation, c is consumption per
animal per unit of land, H is stocking density per unit of land,
Vr is any ungrazeable residual or mandatory carryover biomass,
and Vk is the plant biomass at which consumption equals half
of satiation, also known as the ‘‘Michaelis Constant.’’

The Michaelis Constant in a grazing setting can be
interpreted several ways. Cooper and Huffaker (1997) explain
it as inversely related to the efficiency of a grazing animal, with
a lower number translating into an animal that is able to
achieve desired performance with less forage. Allden and
Whittaker (1970) show that the consumption relationship to
herbage allowance can be shifted due to the density of pastures.
Although not measured in the Allden and Whittaker (1970)
study, the same relationship is assumed to hold true for
pastures of differing forage quality. As the forage resource in
this model is assumed to be homogenous, a system with a lower
Michaelis Constant could be analogous to a system that has
higher quality forage. In other words, two identical animals
will perform differently on pastures with different associated
Michaelis Constants. Whichever interpretation is taken, both of
these can potentially be under a producer’s control, either
through altering herd genetics to get more efficient grazers or
by improving the quality of the pasture.

Our model is parameterized to represent a stocker operation
in central Wyoming where producers determine their stocking
rate and purchase animals in early summer and sell all animals
in the fall. While many grazing systems are characterized more
realistically as cow/calf systems, we are interested in modeling
the dynamic integration of range ecology and economic
implications to find the bio-economically optimal stocking
rate. The inclusion of greater capital investment, the longer
production period, and multiple products (i.e., steer calves,
heifer calves, and cull cows) associated with cow-calf produc-
tion further complicate these relationships. The production
system chosen to be modeled is a stocker operation to address
the trade-offs between stocking decisions and rangeland health
over time. A production system that employs a cow/calf
enterprise may well alter the empirical outcomes of this paper.
However, this model provides a foundation on which such
other systems could be modeled.

Regardless of the operational type, producers are generally
concerned with profit maximization when they make their
stocking rate decision. The single season return to land
equation is a function of forage, stocking rate, and prices:

p V,S,Pi,Pe,Cð Þ~ Pe
:We

: 1{deathlossð Þ½ �{ Pi
:Wi½ �{CCf g:H [4]

where Pe is the ending price per kilogram of the animal, We is
the ending weight of an animal, Pi is the initial weight per
kilogram of an animal, Wi is the weight of an animal when
purchased, and CC is the seasonal carrying costs per animal.
Ending weights are initial weights of animal purchased plus any
gains due to grazing.

Huffaker and Wilen (1991) utilized a forage conversion
coefficient to convert animal consumption to animal gain of
0.096. Our research utilizes this coefficient, which is also in line
with previous studies of stocker cattle in Wyoming (Manley et
al. 1997; Derner et al. 2008). Thus, total gain per animal is
described as (0.096 ?Consumption ?Days on Pasture) over the
grazing season.

A shortcoming of some previous dynamic models related to
grazing is that constant price per weight is assumed over
differing weight classes when evaluating optimal decisions.
Prices per unit of weight, however, are not constant. Producers
are faced with declining prices per unit as weight per animal
increases. Cooper and Huffaker (1997) acknowledged this
price slide effect, and they modeled a system where animals
were purchased at 272 kg at $1.74 ? kg21, and sold at the end
of the season for only $1.43 ? kg21. In order to account for the
price slide effect in the current model, an equation forecasting
prices was generated from data available for the Torrington,
Wyoming, auction. This allowed for a continuous slide over the
relevant range of potential weight gain. The data were received
from the Livestock Marketing Information Center (LMIC; Jim
Robb, LMIC, Lakewood, Colorado, personal communication,
June 2007). Weekly prices were available from 1992 through
2006. It was hypothesized that grain prices would affect the
price slide as well. As corn prices increase, demand for feeder
cattle typically softens, and feeder cattle prices are often
depressed. Thus, corn prices for the period were also obtained
from LMIC. Cattle and grain prices were converted to 2008
dollars. Ordinary Least Squares regression was used to estimate
cattle price as a function of weight and corn price. The
estimated equation is as follows:

P Wend,Pcornð Þ~b0zb1
:Wendzb2

:W2
endzb3

:W3
end

zb4
:Pcornzb5

:Wend
:Pcorn

[5]

where Wend is ending weight of cattle, Pcorn is the price of corn,
and the betas are the coefficients to be estimated. The
regression returned an R2 of 0.47 (F520.36; P, 0.001).
Estimated coefficients are reported in Table 1. As expected, the
output shows a declining price per unit of weight as animal
weight is increased. This decline is less drastic when corn prices
are high. When the corn price is relatively low, feedlots prefer
to purchase lightweight animals and add weight themselves.
However, as corn prices rise, the cost of gain for feedlots also
rises, so they are less likely to pay a premium for lighter
animals. Regardless of corn prices, marginal value per unit
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received by cattle producers is maximized between 295-kg and
340-kg animals.

As stated above, the objective function for the producer will
focus on a producer who owns title or perpetual lease rights to
the grazing land. Therefore, the optimization problem is to
maximize all future discounted returns to land while account-
ing for the effect current grazing decisions will have on future
forage productivity.

Max
H

ðT

0

btS Pe
:We

: 1{deathlossð Þ½ �{ Pi
:Wi½ �{CCf g:HTdt [6]

s:t:
dV

dt
~G{C~G Vð Þ{c Vð ÞH [7]

Estimated parameters are for a hectare of land and are given in
Table 2. The growth rate of forage parameter (c) used (0.1) is
from Noy-Meir (1976) and represents a rangeland of high
productivity. Most of Wyoming’s rangelands would most likely
not be classified as ‘‘highly productive’’ and we were unable to
find any description of other potential parameters for this area,
so the model also was solved for growth rates of 0.06 and 0.03
to determine how sensitive model results were to the
productivity of forage. Following the work of Torell et al.
(1991), weather is not explicitly stochastic, and the growth
parameter is used to represent average productivity each year.
This will allow a true steady state to emerge and initial
sensitivity analyses to be performed. The parameter represent-
ing the maximum plant biomass for this area (Vm) of 350 kg on
a dry matter basis is based on an estimate in Bastian et al.
(2005) of 0.96 AUM ? ha21 productivity for Fremont County
Wyoming (with an AUM representing 363 kg of grazeable
forage). Huffaker and Wilen (1991) utilize daily animal
consumption of 7.1 kg of dry matter per day over a grazing
season taking an animal from 266 kg to 318 kg. Over a 120-d
grazing season, this translated into 850 kg of dry forage
consumption per animal. Huffaker and Wilen (1991), based on
Noy-Meir (1976), also utilized an estimate of 20% of carrying
capacity for the Michaelis Constant for consumption, translat-
ing here to 70.18. Without a better estimate for the Michaelis
Constant, the model also was solved with values of 32.12 and
111.2 (< 8.5% and 31.5% of carrying capacity) to evaluate
how sensitive the outcomes are to this parameter.

Cattle prices (both initial and final) are based on the
estimated price slide equation discussed previously. However,
the model was also solved with cattle prices (both initial and
final) increased, and likewise decreased, by 20% from mean

prices observed for comparison to the baseline outcome. The
price of corn is based on mean values ($0.12 ? kg21) from the
LMIC data over the time period used in estimating the price
function. The model also was solved for differing corn prices,
specifically over the maximum ($0.166 ? kg21) and minimum
($0.08 ? kg21) prices observed in the LMIC data. Initial weight
(250 kg) and days on pasture (120) are in line with a study done
for the Wyoming Red Desert by Bastian et al. (1991) and
results by Derner et al. (2008) of a long-term study in
Wyoming. The grazing season is modeled from early June to
early October. Van Tassell et al. (1997) calculated animal costs
per AUM in a study including Wyoming. The sum of
association fees, veterinary, moving, herding, miscellaneous
labor and mileage, salt and feed, water, horse, and improve-
ment maintenance costs from that study are $9.08 ? AUM21.
Inflating these animal costs to 2008 dollars results in animal
costs of $14.33 ? AUM21. This translates to animal carrying
costs of $40.13 per head ($14.33 per AUM ? 4 mo ? 0.7 AUM
per month) based on average animal weights over the season in
this study. The discount rate used initially was 10%, but results
were also generated for discount rates of 0.1%, 5%, and 20%
for comparison. The model was solved using General Algebraic
Modeling System (Brooke et al. 1998) to maximize the total of
all discounted future returns to land (equation 6).

RESULTS

The model was initially solved using the baseline parameters
(parameters not shown in parentheses in Table 2). For a
hectare of land, given the initial parameters, the objective
function converges to the long-run equilibrium of 195 kg of
standing forage per hectare with an associated stocking rate of
1.66 head per hectare. The optimal solution converges to this
amount of forage from starting points either above or below
this amount. The results of our model are consistent with Noy-
Meir’s (1975) conclusions, which, ignoring economic conse-
quences, state that the ‘‘safe carrying capacity’’ (p. 93) is
defined as

HS~
cVK

cm
[8]

which is 0.988 head per hectare with the given base parameters.

Table 1. Estimated coefficients of the price slide equation.

Coefficients Standard error t stat P value

Intercept 12.99 8.03 1.62 0.11

Cattle weight (kg) [Wend] 20.07 0.08 20.93 0.35

Cattle weight2 2.05E-04 2.47E-04 0.83 0.41

Cattle weight3 22.08E-07 2.59E-07 20.80 0.42

Corn price ($ ? kg21) [Pcorn] 219.35 6.74 22.87 0.00

Corn price ? cattle weight 0.06 0.04 1.44 0.15

Table 2. Base scenario parameters used in the dynamic model.

Parameter
Value (alternative values used in

sensitivity analysis)

c (relative growth rate of forage) 0.1 ? day21 (0.06; 0.03)

Vm (maximum standing vegetation) 350 kg ? ha21

Cm (maximum daily consumption) 7.1 kg ? animal21 ? day21

Vr (mandatory forage residual) 0 kg ? ha21

Vk (Michaelis Constant) 70.18 kg ? ha21 (32.12; 111.2)

Wi (initial weight) 250 kg

b (discount factor) 0.909091 (0.833333; 0.952381; 0.990099)

CC (carrying cost per animal) $40.13 ? animal21

Days on pasture 120

Death loss 2%
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Noy-Meir also shows that the maximum carrying capacity
can be defined as

HX~HSz
c

4cmVm
Vm{VKð Þ2

[9]

which is 2.22 head per hectare given above base parameters.
Given the above parameters, the maximum carrying capacity is
approached but never realized, consistent with Noy-Meir’s
(1975) statement that a stocking rate just below this maximum
capacity ‘‘may be a reasonable choice of ‘normal’ stocking in a
commercial pasture’’ (p. 95). Moreover, these results are in line
with other recommendations such as those found in Torell et al.
(1989).

Table 3 compares outcomes across the differing parameter
values utilized. Overall, it was economically optimal to leave
over half of the standing vegetation. The parameters that had
the greatest impact on ending standing forage were the
Michaelis Constant and cattle prices. The variables with the
greatest impact on stocking rate were the Michaelis Constant
and the forage growth rate. The parameters with the greatest
impact on financial returns were cattle prices and forage
growth rate.

DISCUSSION

Optimal Steady State Values
Economically optimal ending forage values are around 196 kg
of standing vegetation, except when the Michaelis Constant or
cattle prices are varied, which caused optimal ending states to
range from 185 kg to 207 kg and 192 kg to 201 kg,

respectively. This implies that it is optimal for producers to
leave just over half of the standing vegetation when considering
future forage impacts due to current grazing where maximum
standing vegetation is 350 kg. This would imply a lack of
motivation for producers to overgraze rangelands, as long as
previous assumptions about incentives to maximize land value
hold. Even with a lower Michaelis Constant, it is not optimal to
leave less than half of potential standing forage at season’s end.
Again, if the Michaelis Constant is interpreted as previously
mentioned, a producer can improve returns to the land
significantly through either carrying animals that are more
efficient grazers (i.e., able to harvest more forage or gain more
weight per unit of energy expended) or by improving the
quality of the forage on the range, resulting in improved animal
nutrition per unit of forage produced.

These results are in line with the traditional view of land
managers to aim for 50% utilization of desired species as a
general rule for range management for our study area (see for
example Bastian et al. 1991). It should be noted, however, the
‘‘take half, leave half’’ rule of thumb has seen some criticism
due to the fact that animals do not always graze on only the
upper half of all plants (the criticism being not all parts of the
plants are homogenous in terms of regrowth potential), as well
as overlooking the possibility of vegetative changes that can
result from these utilization guidelines (see for example Frost et
al. 1994). Despite some limitations and criticisms, 50%
utilization of key species has not been an uncommon goal of
recommendations (although this recommendation can vary by
both location and species). While obviously an oversimplifica-
tion, the model assumes (see Noy-Meir 1975) the forage stand
is composed of only one type of forage (the key species), with
no difference in quality between plant parts. While Noy-Meir

Table 3. Sensitivity analyses and resulting steady state values across different parameters.

Growth
rate

Discount
rate

Steady state values

State value1

(kg ? ha21)
Stocking rate
(head ? ha21)

End weight
(kg)

Returns2

($ ? ha21)

0.1 0.01 196 1.6641 310 $112.25

0.05 196 1.6661 310 $112.25

0.1 196 1.6686 310 $112.25

0.2 194 1.6735 310 $112.25

0.03 0.1 193 0.5041 309 $33.66

0.06 195 1.0035 310 $67.34

Corn price ($ ? kg21)

0.08 0.1 0.1 194 1.6740 310 $117.91

0.121 196 1.6686 310 $112.25

0.166 197 1.6620 310 $106.12

Michaelis Constant

32.12 0.1 0.1 185 1.4569 319 $129.89

70.18 196 1.6686 310 $112.25

111.2 207 1.8404 303 $95.62

Output prices

Decreased 20% 0.1 0.1 201 1.6417 310 $76.51

Base 196 1.6686 310 $112.25

Increased 20% 192 1.6821 309 $148.18
1Michaelis constant, 70.18; corn price, 0.121; growth rate, 0.1; discount rate, 0.1.
22008 dollars.
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warns that results from his model may not be applicable to
more complex systems, he does state that results would not be
expected to be highly sensitive to deviations from his
assumptions and should generally hold for situations that
approximate those in his model.

When the forage growth parameter is 0.1, optimal long-run
stocking rates are around 1.66 head per hectare. This is
sensitive only to changes in the Michaelis Constant, varying
between 1.45 and 1.84 head per hectare. This is due to the fact
that per-animal consumption is determined by standing forage,
but altering the Michaelis Constant ultimately alters the
consumption per-animal at a given quantity of standing forage.
Once consumption per animal is determined, the only way to
remain at a steady state is to find the stocking rate that equates
consumption to growth.

End weights for cattle were around 310 kg except where the
Michaelis Constant was varied. With declining prices for higher
sale weights, heavier animals did not optimize returns. As seen
in Table 3, even with different Michaelis Constants, optimal
sale weight does not exceed 320 kg.

If the forage growth parameter used is 0.06, the stocking rate
drops to 1.0 head per hectare, and if the growth parameter is
only 0.03, this falls to 0.5 head per hectare. Therefore, stocking
rate depends on potential forage production, and optimal
stocking rates should be aligned with this forage growth
parameter.

Not surprisingly, returns per hectare are most responsive to
changes in the forage growth parameter. Land with more
forage production potential can carry more animals over the
season to the same ending weights, resulting in much higher
returns. The Michaelis Constant also has a large impact on
return per hectare as well. Again, a producer with more
efficient grazers or higher quality forage can produce more
weight gain per hectare of land, resulting in higher returns to
the land base. This is not only due to the ability to produce
more gain per area of land, but the ability to do so with a lower
stocking rate, resulting in lower variable costs per hectare.

Producers are also often aware of fluctuating prices. Indeed,
according to this model, cattle prices have a large impact on
returns per hectare. However, stocking decisions vary little
across different cattle price levels, unlike the results of some
previous modeling efforts (see for example Hart et al. 1988;
Torell et al. 1989; Manley et al. 1997). Similarly, corn prices
have an impact on financial returns per hectare (although less
so than cattle prices), but optimal stocking decisions vary little.
Unfortunately, this implies there is little a producer can do by
means of grazing management to alleviate the impact of either
low cattle prices or high corn prices.

Optimal Stocking Rate in Order to Achieve Steady State Values
A convenient outcome available with dynamic programming is
the ability to determine the optimal response function, which
prescribes stocking rate in this case. Given the desired steady
state values described in Table 3, the optimal response function
determines which stocking rate should be utilized in order to
best reach the desired steady state (economically) for any given
initial standing level of forage. In the beginning of the grazing
season, a producer must make stocking decisions. Given that
initial standing forage is observable, the approach utilized here

allows a producer to make the stocking decision that will
maximize total returns to land over the infinite horizon based
solely on that standing forage level. Figure 1 shows what
stocking rate should be set for various levels of initial standing
forage across the different scenarios. In all cases, optimal
stocking should be based on standing forage. When existing
forage is not at the desired steady state, annual stocking should
be lowered in order to reach the optimal ending forage levels.
This implies that long-term productivity drives the stocking
decisions more so than short-term profits.

Figure 1A illustrates that when utilizing an infinite planning
horizon, the discount rate has little effect on optimal stocking
rate for any given level of standing forage. As can be seen in
Figures 1B and 1C, neither corn price levels nor steer price
levels alter the optimal stocking rate for a given standing forage
level. In fact, the reason Figures 1A–1C are shown in three
dimensions is that in two dimensions, there is not any visible
difference in optimal stocking rates for the alternative values of
the parameters analyzed. However, Figures 1D and 1E show
that growth rate, or plant productivity, and the Michaelis
Constant alter optimal stocking patterns greatly for a given
standing forage level. Given our model and its assumptions
regarding maximization of the sum of discounted returns to the
land, regardless of a producer’s personal discount rate, the
price level of corn, or the output price level, the optimal
stocking rate is determined predominantly on standing forage
for given biological response parameters. This is somewhat
counter to previous studies such as Manley et al. (1997), which
indicate high cattle prices can influence producers to tempo-
rarily increase stocking rates to potentially unstable levels.

As seen in Figure 1D, the difference in optimal stocking rate
in terms of varying growth rate is greatest toward the center of
the state space (i.e., the response surface across the state of the
forage resource). Near an undisturbed range state (high amount
of standing forage), optimal stocking is not as drastically
different across forage productivity levels as producers’ optimal
response is to utilize the high amounts of standing forage.
However, near states with lower standing forage, producers
with less productive forage will need to stock at relatively lower
rates in order to reach the desired ending forage stand. As the
forage stand reaches the desired state, the difference in stocking
is highest. Given the forage growth parameters used, this is
where the forage is most productive.

As seen in Figure 1E, stocking rate differences are greatest
toward a state with lower amounts of standing forage, given
differing values for the Michaelis Constant. As the state of the
forage is closer to maximum standing forage, the economically
optimal stocking rates associated with the differing values of
the Michaelis Constant converge. These results imply that a
producer who is managing land that has low amounts of
standing forage must stock at an even lower relative rate when
faced with a system with a lower Michaelis Constant (whether
that is due to either forage quality or the efficiency of grazing
animals) in order to reach the desired steady state while
maximizing long-term profits.

Obviously, a producer with more productive rangeland can
set a higher stocking rate. It is interesting, however, that in a
situation with a higher Michaelis Constant, whether through
less productive grazers or lower quality forage, an economic
optimum is achieved by stocking at a higher rate and ending
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with lower weight animals. Producers who are faced with a
situation that relates to a lower Michaelis Constant, whether
having more efficient grazers or higher quality forage, should
stock at a lower rate and end up putting more weight on their
animals. Again, this ultimately is due to the ability to allow
more gain per animal while maintaining lower carrying costs
associated with lower animal numbers.

IMPLICATIONS

Our model suggests that for stocker operations with the aim of
maximizing the value of the land and with an infinite time
horizon, it is optimal for producers to incur lower returns
initially in order to improve rangeland health, as opposed to a
producer interested in maximizing current year profits only.
Although optimal levels of standing forage are reliant on growth
rates of forage and consumption characteristics of animals, the
idea of 50% utilization is fairly consistent with bioeconomically
optimal stocking decisions from this model. In fact, in most
cases, the economically optimal standing forage at season end is
55% of potential production. This result is consistent with
previous studies investigating optimal stocking rates.

The results suggest that cattle and corn price levels can have
a major impact on financial returns, but producers should not

alter their stocking decisions based on variation in either of
these price levels. Regardless of price levels, producers never
had an incentive to overgraze the range in any of the scenarios
evaluated for this model. Overall, the results indicate that a
producer must be aware of current conditions of the range in
order to make optimal decisions. Although selecting the proper
stocking rate is vital to maintaining long-term range health, one
of the largest impacts on financial returns for producers is to
carry efficient grazers or have high quality forage, as evidenced
by the sensitivity of the results to different values for the
Michaelis Constant. This finding indicates that continued
research by physical scientists related to animal performance
and grazing efficiency as it relates to such variables as forage
density and forage quality would improve knowledge about the
Michaelis Constant and ultimately improve the ability of
bioeconomic models, such as this, to prescribe optimal and
sustainable grazing management strategies.
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