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Abstract

Two demonstration sites in southeast Idaho were used to extend the scope of remote sensing of leafy spurge research toward
investigating coarser scale detection limits. Hyperspectral images were obtained to produce baseline leafy spurge maps, from
which spatially and/or spectrally degraded images were subsequently derived for comparative purposes with Landsat 5
Thematic Mapper (TM). The baseline presence/absence maps had an overall accuracy of 67% at the Spencer study site and 85%
at the Medicine Lodge study site. Unexpectedly high-accuracy results were produced from the images that were spectrally
degraded to the bandwidths of Landsat 5§ TM, which suggests that high spectral resolution is not critical to leafy spurge
detection. However, a classification using a Landsat 5 TM image indicates that the sensor is inadequate for regional distribution
monitoring. The differences in results between the actual and degraded images suggest that a sensor with comparable
resolutions but improved instrumentation (e.g., signal to noise) may offer an alternative to hyperspectral data for mapping leafy
spurge at regional scales.

Resumen

Dos sitios de demostracion en el Sureste de Idaho fueron utilizados para ampliar el alcance de la deteccion a distancia de la
investigacion de la hierba de leche contra la investigacion de los limites mds toscos de detencion de la escala. Las imdgenes
Hiperspectrales fueron obtenidas para producir mapas de referencia de la hierba de leche, a partir de las cuales imigenes
espacialmente y/o espectralmente degradadas fueron derivadas subsiguientemente para propdsitos comparativos con la Landsat
5 Thematic Mapper (TM). Los mapas de referencia de presencia/ausencia tuvieron una precision general de 67% en el sitio del
estudio de Spencer, y un 85% en el sitio del estudio del Medicine Lodge. Los resultados de alta precision inesperadamente
fueron producidos de las imdgenes que estaban espectralmente degradadas a las amplitudes de banda de Landsat 5 TM, que
sugiere que esa resolucion espectral alta no es critica para la deteccion de la hierba de leche. Sin embargo, una clasificacion
utilizando una imagen Landsat 5 TM indica que el sensor es inadecuado para el monitoreo regional de la distribucion. Las
diferencias en resultados entre las imdgenes actuales y las degradadas sugieren que un sensor con resoluciones comparables pero
con instrumentacion mejorada (por ejemplo, sefial-ruido) puede ofrecer una alternativa a los datos hiperspectrales para mapear

la hierba de leche a escalas regionales.
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INTRODUCTION

The rate and spatial extent of biological invasions are
increasing in an unprecedented manner across the globe. This
invasion trend is recognized as a major component of global
environmental change and as an escalating and expensive
national problem (Vitousek et al. 1997; Lodge et al. 2005). The
overall cost of biological invasions in the United States, in terms
of damage, loss, and control, is estimated at $120 billion each
year for approximately 50000 species (Pimentel et al. 20035).
Invasive plant species can alter ecosystem functions and cause
negative economic impacts in a number of ways, including
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devaluation of land, reduction of agricultural productivity and
rangeland, loss of native habitat, decline of species diversity,
and alteration of fire regimes and soil dynamics (Olson 1999).
Leafy spurge (Euphorbia esula L.) is an introduced plant listed
as a noxious weed in parts of Canada and the north central and
western United States. Once established, leafy spurge invasions
can spread rapidly, causing particularly serious economic
problems on rangelands, where grazing capacity sharply
declines (Hein and Miller 1992). Leafy spurge now infests
approximately 2 million ha of rangeland, pastures, hillsides,
and riparian areas in North America, where the size of infested
areas has been doubling nearly every 10 years (Quimby and
Wendel 1997).

The invasion mechanisms and reproductive characteristics of
leafy spurge are such that complete eradication is unlikely.
Land managers report that seeds are persistent and easily
dispersed and transported by way of animals, mud, hay, and
water. Reproduction can occur through extensive seed produc-
tion and vegetative reproduction from both the crown and root
buds (Hanson and Rudd 1933; Bakke 1936; Bowes and
Thomas 1978). As such, infestations of leafy spurge are often
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widespread, and cost-effective tools such as remote sensing are
needed to monitor changes in leafy spurge distribution and
abundance over time (Anderson et al. 2003). Remote sensing
has become a useful tool for efficiently mapping the distribu-
tion of some invasive plant species, including leafy spurge, over
large areas that would otherwise be difficult to survey (Everitt
et al. 1995; Lewis et al. 2000; Lamb and Brown 2001; Parker
Williams and Hunt 2002, 2004; Everitt and Yang 2004).

One of the challenges with remote sensing of leafy spurge is
to leverage the accuracy of detection with the cost of the
acquisition and processing of the data. Detecting leafy spurge
with coarse spatial and spectral resolution imagery (e.g., at best
Landsat 5 scale) is optimal from a cost analysis perspective.
Classification accuracy tends to decrease at coarser spatial
resolutions because there is an increase in the number of pixels
that exhibit a mixed response or overlap between classes. At the
same time, classification accuracy may decrease at finer spatial
resolutions because of more spectral noise or heterogeneity,
which tends to average out at coarser resolutions (Markham
and Townshend 1981). This study expands the scope of
previous work on remote sensing of leafy spurge by further
shifting the focus from establishing finer scale detection limits
using high spectral and/or spatial resolution sensors toward
investigating coarser scale detection limits. In this study our
first objective was to compare the relative importance of spatial
and spectral detection components for leafy spurge discrimi-
nation. Our second objective was to assess the suitability of
using widely available multispectral satellite imagery (i.e.,
Landsat 5) for surveying core leafy spurge infestations (both
current and historic) and monitoring regional distribution and
abundance patterns.

Comparison of Remote Sensors
Most multispectral remote sensors detect solar radiance and
absorption of earth materials at a moderate spatial resolution
by way of a few broad bands in the visible and infrared (near,
short, and thermal) portions of the electromagnetic spectrum.
Imaging spectrometry, or hyperspectral imaging, is a remote
sensing technology whereby many narrow bands collect surface
radiance information throughout a near-contiguous range of
the visible, near-infrared, and shortwave infrared portions of
the electromagnetic spectrum (Goetz et al. 1985).
Multispectral sensors such as the Landsat 5 Thematic
Mapper, ASTER (Advanced Spaceborne Thermal Emission
and Reflection Radiometer), and SPOT (Satellite pour I’Obser-
vation de la Terre) are satellite based and provide global
coverage at regular (Landsat 5 and SPOT) or semiregular
(ASTER) time intervals. Standard multispectral classification
techniques have been developed to classify images into broad
categories (Jensen 2005). Remotely sensed data with spatial
resolutions of 15-30-m pixels are frequently used for vegeta-
tion applications such as land use or land cover classification
and rangeland and forestry monitoring (Johnson 1999). In
some cases in which a target has spectrally unique character-
istics or grows in clusters, multispectral sensors are capable of
differentiating individual species (Johnson 1999).
Hyperspectral sensors such as HyMap and AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) are airborne and cover
relatively small, narrow geographic areas at irregular time
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intervals and with spatial resolution typically ranging from 3 m
to 20 m. Compared to multispectral sensors, airborne hyperspec-
tral sensors have higher spectral, spatial, and radiometric
resolution than multispectral data. Thus, they are more capable
of distinguishing subtle spectral responses among species and
improving quantitative model estimations of canopy structure and
biochemical properties (Aspinall et al. 2002; Parker Williams and
Hunt 2002; Root et al. 2004; Ustin et al. 2004; Underwood et al.
2007). High spectral resolution facilitates the use of linear spectral
mixture analysis classification techniques that estimate subpixel
abundance (Boardman 1998; Aspinall et al. 2002). High spatial
resolution airborne data increase the probability of detecting
smaller infestations, but such images, when used for repeat
monitoring, can present unique challenges in the way of
georegistration and geometric errors (e.g., image rotation or
nonuniform pixel shifts; Aspinall et al. 2002; Glenn et al. 2005).
Additional challenges include successfully requesting and coordi-
nating image acquisition, the need for extensive image processing
techniques, and overall costs. As such, high-resolution hyperspec-
tral imagery is less suitable for frequent vegetative monitoring.
Satellite-based hyperspectral imagery has the potential to over-
come some of these challenges and has been collected by the
Hyperion sensor (30-m pixels) onboard NASA’s Earth Observing-
1 (EO-1) and by the sensor onboard the Airforce Research Lab’s
MightySat II (Otten et al. 1997; Ungar et al. 2003).

Previous Work

During peak phenology, the yellow-green flower bracts of leafy
spurge are spectrally unique and can be distinguished from
surrounding vegetation using remote sensors because of higher
reflectance in the visible region (0.5-0.7 um) and higher
reflectance values and different spectral signatures in the
chlorophyll absorption region (0.55-0.69 um; Everitt et al.
1995; Anderson et al. 1996, 1999; Parker Williams and Hunt
2002, 2004; Hunt et al. 2004).

Both hyperspectral and multispectral sensors have been used,
with varying degrees of success, to identify leafy spurge (Everitt
et al. 1995; O’Neill et al. 2000; Parker Williams and Hunt
2002, 2004; Root et al. 2002; Dudek et al. 2004; Hunt and
Parker Williams 2006; Glenn et al. 2005; Stitt et al. 2006).
Root et al. (2002) and Dudek et al. (2004) used AVIRIS (20-m
pixels, 224 bands [0.4-2.5 um]) and Hyperion (30-m pixels,
220 bands [0.4-2.5 pum]) with classification accuracies ranging
from 39% to 63%. Classification methods in these studies
included mixture-tuned matched filtering (MTMF; Harsanyi
1993; Harsanyi and Chang 1994; Boardman 1998) and
spectral angle mapper (SAM; Kruse et al. 1993). Parker
Williams and Hunt (2002, 2004) used AVIRIS imagery to
map leafy spurge in northeastern Wyoming with classification
accuracies of 75-95% for large, high-density leafy spurge
infestations. Glenn et al. (2005) found similar results in Idaho
using HyMap imagery (3.5-m pixels, 126 bands [0.45-
2.48 um]), with overall classification accuracies above 84%.
In this study leafy spurge infestations at 10% cover could be
detected within a 3.5-m pixel, and infestations at 40% cover
could be repeatedly detected over the same area.

Mladinich et al. (2006) used Landsat 7 imagery to classify
leaty spurge with overall classifications of approximately 63%.
The authors concluded that although the imagery was
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inappropriate for small-scale detection, the study did demon-
strate the potential for regional distribution mapping. In
addition, the authors suggested that advanced image-processing
techniques such as MTMF may increase leafy spurge detection
with Landsat. Stitt et al. (2006) used the Advanced Land Imager
(ALI) to produce conservative accuracy assessments in the range
of 59-66%. The ALI sensor has seven bands that are spectrally
and spatially comparable to Landsat (30-m pixels), as well as
three panchromatic bands with a 10-m spatial resolution. It
should be noted that the signal to noise ratio (SNR) of ALIis 2.5
times higher than that of Landsat 7 (Kutser et al. 2003).

A limited number of studies have compared the use of
hyperspectral and multispectral imagery for leafy spurge
detection (Hunt and Parker Williams 2006; Root et al. 2004;
Stitt et al. 2006). To detect the distribution and abundance of
leafy spurge in prairie, riparian, and woodland cover types,
Hunt and Parker Williams (2006) found similar classification
accuracies between AVIRIS, Landsat 7, and SPOT (approxi-
mately 63-68%). Root et al.’s (2004) review of leafy spurge
research from 1998 to 2003 determined that hyperspectral data
yielded slightly higher overall classification accuracies (63—
78%) than multispectral classification accuracies (60-70%),
although multispectral classification techniques and accuracy
assessment details are unpublished. This study included cost-
benefit analyses of satellite and aircraft-based sensors, which
indicated that the use of multispectral sensors, possibly
combined with predictive modeling, is the most efficient means
of mapping leafy spurge infestations at the regional scale.

METHODS
Study Site

Research was conducted on approximately 7700 ha of
sagebrush steppe on and in the vicinity of Medicine Lodge
(lat 44°19'N, long —112°30"W), and Spencer (lat 44°21'N,
long —112°10"W), Idaho, USA (Fig. 1). Both sites are located
just south of the Continental Divide, in the Centennial
Mountains of Clark County, within 20 km of the town of
Dubois. The Spencer area has a long history of leafy spurge
invasion. The weed was likely first introduced into the towns of
Dubois and Spencer by way of the Union Pacific Railroad,
which was built in the late 1800s and is now located alongside
Interstate 15, both of which span the length of the Spencer
study site. The Medicine Lodge and surrounding drainages
(Rocky Creek, Middle Creek, and Indian Creek) have a
somewhat shorter invasion history than Spencer because the
railroad is farther away, although Medicine Lodge infestations
were exacerbated by fire in 2003. Similar general distribution
patterns that were observed at both the Medicine Lodge and
Spencer sites include well-established colonies of leafy spurge
associated with rock outcrops and areas of concentrated
livestock use, and absence or low concentrations of leafy
spurge associated with xeric knolls along hill slopes. Despite
similar general distribution patterns, leafy spurge is present at
high densities throughout the Medicine Lodge site, with ground
cover estimates averaging 60%. In contrast, infestations at the
Spencer site are characterized by a single expansive, core
infestation (~0.75 km?), and infrequent occurrences of low-
density infestations throughout the remainder of the site.
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Figure 1. Location of hyperspectral flightlines and ground reference
sites. Three overlapping flightlines were acquired over the Spencer study
area, and two perpendicular flightlines were acquired over the Medicine
Lodge study area.

Image Acquisition

In this study the high spectral and spatial resolutions of
hyperspectral imagery were necessary for obtaining baseline
data, from which spectrally and/or spatially degraded images
could be derived for comparative purposes. The relatively
coarser spectral and spatial resolutions of Landsat imagery
were necessary to assess the validity of the degraded image
results and the suitability of using widely available multispec-
tral satellite imagery for regional distribution mapping.

Hyperspectral imagery was collected over the study area
using the HyMap sensor (operated by HyVista, Inc.) mounted
on an aircraft flying about 1 000 m above the ground to obtain
3.2 X 3.2 m pixel resolution. The HyMap sensor collected five
flightlines of data on 28 June 2006, which was an optimal date
for capturing leafy spurge in peak bloom—its most distinct
phenological state. Three overlapping flightlines totaling
3.5 X 12.0 km were situated lengthwise approximately
0.6 km south of the town of Spencer, north to Stoddard Creek.
Two additional flightlines (1.75 X 10 km each) were located in
the Medicine Lodge area, of which the first was oriented
parallel and the second perpendicular to the Medicine Lodge
Creek drainage (Fig. 1).

The HyMap instrument collects calibrated radiance data in
126 near-contiguous spectral bands (0.45-2.48 um) that range
in width from 15 pm in the visible and near-infrared to 20 pm
in the shortwave infrared (Kruse et al. 2000). For comparative
purposes, a single Landsat 5 image was acquired over the study
area on 13 June 2006 (path 39, row 29). The Thematic Mapper
(TM) on board the Landsat 5 satellite collects data in seven
relatively broad bands: Band 1 (blue, 0.45-0.52 um), Band 2
(green, 0.52-0.60 um), Band 3 (red, 0.63-0.6 9 um), Band 4
(near-infrared, 0.76-0.90 pm), Band 5 (mid-infrared, 1.55-
1.75 um), Band 6 (thermal infrared, 10.4-12.5 pum), and Band
7 (mid-infrared, 2.08-2.35 pm). The thermal band has a spatial
resolution of 120 X 120 m, and the other six bands have a
spatial resolution of 28.5 X 28.5 m.
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Field Validation

Roaming surveys of leafy spurge infestations focused on
capturing a uniformly distributed range of target abundance at
sites representative of the ecological variability within the project
areas (although forested locations were excluded). The majority
of infestation boundaries were roughly mapped, and circular
plots were used to collect calibrated, continuous ocular estimates
of leafy spurge percentage canopy cover. Beyond North America
Weed Management Association mapping standards were used as
a guide for field data collection (Stohlgren et al. 2006). The
sample design used a 7.32-m radius circle (168.25 m?) with three
transects extending from the center of the circle to the perimeter
at N30W, N150W, and N270W. Leafy spurge cover was
estimated at the plot scale and in three 1-m” plots along each of
the three transects (a total of 9 Daubenmire quadrats [Dauben-
mire 1959] per plot). The size of the sampling plot allowed for
the relative comparison of accuracy assessment results at the
hyperspectral and multispectral scales because the plots were
treated as polygons at the hyperspectral scale and as individual
pixels at the multispectral scale. Sampling was initiated at the
Spencer site on 16 June 2006, a few days before full bloom, and
continued during and shortly after peak phenology, ending on 26
July 2006. A total of 56 plots, 43 with leafy spurge present and
13 with leafy spurge absent, were sampled. Validation samples
were collected in Medicine Lodge from 26 July to 13 August
2006, after peak phenology. A total of 55 plots, 43 with leafy
spurge present and 12 with leafy spurge absent, were sampled in
Medicine Lodge.

To calibrate ocular estimates of leafy spurge percentage
canopy cover across a continuous interval, estimates for the
first five plots included an initial ocular estimate at the plot
scale, followed by estimates at each of the nine quadrats using a
point frame (Floyd and Anderson 1982) and a Daubenmire
quadrat frame (Daubenmire 1959). Initial estimates at the plot
scale were consistently closer to the average quadrat estima-
tions using a point frame (only one of the five calibration plots
varied by more than 1%). Estimations using the Daubenmire
quadrat were consistently about 20% lower than initial ocular
estimates at the plot scale. Although the point frame estimation
technique was designed for sagebrush steppe ecosystems and is
regarded as a more objective method than visual cover
estimation (Bonham 1989), the Daubenmire frame was chosen
for its ease of use and speed to estimate cover at the quadrat
scale. Regression plots indicated strong agreement between the
ocular cover estimation techniques at the plot and quadrat level
for leafy spurge (+* = 0.76; not shown). These plots also
suggested that results are less variable when estimating low and
high percentage cover than when estimating percentage canopy
cover in the midrange (20-60%).

Image Preprocessing

All image preprocessing and processing, unless otherwise
stated, was performed using the Environment for Visualizing
Images version 4.3 software (ITT Visual Information Solutions,
Boulder, CO). Hyperspectral radiance values were converted
by the vendor to apparent reflectance using the HyCorr
(Hyperspectral Correction) absolute atmospheric correction
modeling package, which was developed by Commonwealth
Scientific and Industrial Research Organization Division of
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Exploration and Mineral Mining Mapping and is based on the
Atmospheric Removal Program (ATREM; Gao and Goetz
1990; ATREM 1992). The multispectral imagery was convert-
ed to apparent reflectance with FLAASH (Adler-Golden et al.
1999). The absolute atmospheric corrections produced scaled
surface reflectance values that account for scattering and
absorption of solar radiation by the earth’s atmosphere. Such
corrections are relevant to this study because they enable data
recorded at the sensor to be directly compared to data recorded
on the ground (i.e., field spectroscopy measurements and
oblique ocular cover estimates) and to other remotely sensed
images obtained under different atmospheric conditions (i.e.,
comparisons between HyMap and Thematic Mapper imagery
of the study area).

To assess HyMap georegistration error, 10 differentially
corrected global positioning system ground control points were
collected in the central Spencer flightline and nine in the north-
south Medicine Lodge flightline. Ground control points were
collected for these two flightlines because they contained the
majority of ground reference samples. Directional shifts
occurred nonuniformly, with mean errors of 3.39 m and
0.813 m for the Medicine Lodge and Spencer flightlines,
respectively. For the purpose of conservative accuracy estima-
tions, buffers were not applied to the validation plot perimeters
to accommodate georegistration error.

The influence of topographic error was minimized in the
Landsat 5 TM image by automatically registering the image to
a corresponding terrain-corrected Multi-Resolution Land
Characteristics [MRLC] image (row 39, path 29; 1 July
2001, 30-m pixels). Optimal georegistration corrections de-
creased positional errors to a range of one to three pixels and
were achieved using an area-based rather than a feature-based
registration. The apparent reflectance image was warped to the
MRLC using band 2 from both images and first degree
polynomial resampling with cubic convolution.

Image Processing
The two Medicine Lodge hyperspectral flightlines were
processed as a single georeferenced mosaic, and the three
Spencer flightlines were processed as a single georeferenced
mosaic. After a preliminary evaluation of the data, bands
obviously influenced by noise or water absorption were
removed from the mosaics. The two study sites were classified
independently, because the use of a single endmember from the
Medicine Lodge training area, when applied to both sites,
produced unrealistic classification results for the Spencer site.
An endmember is defined here as a single pure pixel selected
within the image. The spectral signature of the endmember is
used to unmix and estimate subpixel target abundance in the
remaining pixels of the image. In addition, nonparametric
Kolmogorov-Smirnov (P = 0.037) and Mann-Whitney (z-
score = 2.832) tests were used to compare the distribution
shapes and population statistics for leafy spurge cover data
collected at the Medicine Lodge and Spencer sites. Both tests
concluded that the ground reference data sampled at the
Medicine Lodge and Spencer sites were not statistically similar
at a 95% confidence level.

To explore changes in leafy spurge detection performance at
coarsened spectral and spatial resolutions, different combina-
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Figure 2. Flow diagram depicting mixture-tuned matched filtering (MTMF) and spectral angle mapper (SAM) classification methods and spatial and
spectral degrading parameters for the following: A, the Medicine Lodge hyperspectral imagery; B, the Spencer hyperspectral imagery; and C, the

Landsat 5 Thematic Mapper (TM) imagery.

tions of spectral and spatial resampling were applied to the
Medicine Lodge HyMap mosaic (121 bands, 3.2-m pixels) to
produce three additional images: a spatially degraded image,
spectrally degraded image, and spectrally and spatially degrad-
ed image (Fig. 2). The spatially degraded image was generated
using a pixel aggregation method to simulate the Landsat 5 TM
spatial resolution (30-m pixels) while retaining hyperspectral
resolution (121 bands). The pixel aggregation method averages
all of the pixels that contribute to the output pixel. In this study
spectral averages of roughly 100 contributing pixels were used
to generate 30-m-scale images. This method is considered a
square-wave approach because the measurement that is
produced assumes that radiance is equally weighted within
the sensor’s field of view (Gao and Huete 2000). The spectrally
degraded image was generated using a filter function to
simulate the six relatively broad nonthermal bands of the
Landsat 5 TM. The spatially and spectrally degraded image
(simulated Landsat 5 TM) was generated by first applying a
filter function to simulate the TM bands, and then using the
pixel aggregation method to increase the pixel size from 3.2 m
to 30 m. A similar approach was used in a related study that
explored the detection potential of three invasive species within
the context of six vegetation communities (Underwood et al.
2007). The Medicine Lodge data were chosen over the Spencer
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data to be resampled because preliminary results indicated that
they performed better at detecting leafy spurge.

Image Classification

MTMEF is a spectral mixture analysis technique that has been
successfully used in previous studies to identify leafy spurge in
hyperspectral imagery (Parker Williams and Hunt 2002, 2004;
Dudek et al. 2004; Glenn et al. 2005). The MTMF
classification generates two data sets: a matched filtering
(MF) band and an infeasibility band. Matched filtering scores
provide estimates of subpixel target abundance, where a score
near zero would be interpreted as background or noise in the
image and a score of one would be interpreted as a perfect
match to the spectral signature of an endmember (Harsanyi
1993; Harsanyi and Chang 1994; Boardman 1998). Infeasibil-
ity values provide estimates of how closely the pixels
approximate the endmember pixel or the likelihood that the
classified pixel is a false positive (Boardman 1998). Further
details on the MTMF method can be found in Mundt et al.
(2007).

MTMEF classifications were applied to the Spencer and
Medicine Lodge HyMap mosaics, the three degraded Medicine
Lodge HyMap mosaics, and the Landsat 5 TM image focused
on the Medicine Lodge and Spencer areas (Fig.2). First,
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Figure 3. A scatterplot of infeasibility values (y-axis) vs. matched filter (MF) scores (x-axis) illustrates the use of a threshold to delineate target
presence and absence. The MF demonstrates abundance of leafy spurge and the infeasibility value provides a measure of false positives.

forward minimum noise fraction (MNF) transformations were
applied to the reflectance bands of each dataset (Green et al.
1988). These transformations estimated noise statistics using
shift differencing over the complete scenes (Mundt et al. 2007).
Shift differencing assumes adjacent pixels have the same signal
but different noise. Resultant MNF-transformed bands were
reordered in terms of unit noise standard deviations such that
coherent bands could be separated from noise-dominated bands
and retained in later image processing steps (Kruse 2003).

For the Spencer HyMap mosaic, the first 40 MNF bands
explained 83% of the data and were retained to identify
endmembers for classification. For the Medicine Lodge HyMap
mosaic, the first 30 MNF bands explained 82% of the data and
were likewise retained for endmember derivation. For images
with six multispectral bands, all six bands were retained for
subsequent classification steps.

Endmembers were chosen for the Medicine Lodge and
Spencer datasets comparing pixels identified from training
areas in the images to spectrally pure pixels identified in image
processing. Where more than one potential endmember was
identified for each dataset, we selected a user-guided end-
member pixel with high percentage target cover and an average
spectral signature. (Glenn et al. 2005; Mundt et al. 2007). The
endmember identified for the MTMEF classification of the
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Medicine Lodge HyMap mosaic was also used to identify
endmembers for the MTMEF classifications of the two degraded
images. For both the spatially degraded HyMap image and the
spectrally and spatially degraded HyMap image, a single user-
defined endmember pixel was selected for each classification by
examining spectral signatures of pixels in the vicinity of the
training areas. In each degraded image the spectral signature
that most closely resembled that of the previously identified
Medicine Lodge endmember was selected as the classification
endmember.

To arrive at presence or absence classification thresholds for
individual MTMF classifications, spatial subsets within the
project area mosaics were used to generate scatterplots of
infeasibility values (y) vs. MF scores (x; Fig. 3). Clusters of
pixels within each scatterplot were interactively selected to
investigate which portions of the pixel cloud corresponded to
noise, or spectrally distinct classes such as riparian or bare
ground. Once a threshold was determined that represented a
balance between errors of omission and commission, linear
regression was used to describe the leafy spurge presence or
absence threshold line. The matched filtering and infeasibility
images were then mathematically combined such that values
below the threshold equated to presence and values above the
threshold equated to absence.
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Figure 4. Spectral signatures of the final endmember pixels selected for mixture-tuned matched filtering classifications. (TM indicates Thematic

Mapper.)

A series of classification methods were applied to the entire
Landsat 5 TM image, including MTMF, SAM, maximum
likelihood, and minimum distance. These classification meth-
ods were applied to all six bands, both untransformed and
MNF transformed. The MTMEF classification method was
applied to the Medicine Lodge area of the Landsat 5 image
using an endmember pixel from the Medicine Lodge training
area, and the MTMF classification method was also applied to
the Spencer area of the Landsat 5 image using an endmember
pixel from the Spencer training area. Figure 4 depicts spectral
signatures for pixels that were selected as final MTMF
classification endmembers. Figure 5 depicts spectral signatures
for pixels that were selected as final SAM classification
endmembers. A total of five image-derived endmembers from
the Medicine Lodge and Spencer training areas were used in the
SAM classification (Fig. 5).

Accuracy Assessment

This study assessed the accuracy of each presence/absence
classification by generating error matrices and calculating
overall accuracy, user’s accuracy (percentage of pixels that are
correctly classified on the ground), and producer’s accuracy
(percentage of a given class that is correctly identified on a map;
Congalton and Green 1999; Congalton 2004; Foody 2004). No
training data were used in the error matrices. The error matrices
were also used to compute a kappa coefficient of agreement for
each classification. The kappa statistic is a measure of how well
the classified map agrees with the validation samples compared
to chance agreement. An incremental cover technique was
applied to each classified Medicine Lodge image to quantify the
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minimum percentage cover of leafy spurge necessary to detect
leafy spurge under various resolution scenarios using the
producer’s accuracy (Mundt et al. 2006). This method assumes
that pixels containing high percentage target cover are more
likely to classify correctly than pixels containing low percentage
target cover. The producer’s accuracy is calculated by dividing
the number of samples classified as leafy spurge by the total
number of presence (field) samples. Consequently, the produc-
er’s accuracy for the presence category should increase as
infestations with lower percentage cover are successively
removed. Changes in producer’s accuracy are evaluated in
cumulative 10% cover increments.

RESULTS

The true HyMap Medicine Lodge classification had an overall
accuracy of 85% and a kappa value of 0.65, which indicated
that agreement in the error matrix was significantly greater
than chance agreement (Table 1). The true HyMap Spencer
classification had an overall accuracy of 67% and a kappa
value of 0.31 (Table 1). Comparing the Medicine Lodge and
Spencer classifications (both HyMap and Landsat 5 TM tuned
to each area), the Medicine Lodge classifications outperformed
the Spencer classifications (Table 1). The MTMF classification
of the Landsat 5 image tuned to the Medicine Lodge area
produced a high overall accuracy (62%) but was accompanied
by a low kappa value (0.38). For classifications of the entire
Landsat 5 scene (i.e., minimum distance, maximum likelihood,
and SAM using both untransformed and MNF transformed
bands as input), the only classification method realistic enough
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Figure 5. Spectral signatures of endmember pixels used in spectral angle mapper (SAM) and mixture-tuned matched filtering (MTMF)

classifications of the entire Landsat 5 Thematic Mapper image.

to quantify with an accuracy assessment was the SAM
classification using MNF transformed bands. This classification
method produced an overall accuracy of 46%, and the kappa
value of 0.15 indicated poor agreement. The high user’s
accuracy for the present category (96%) and the high
producer’s accuracy for the absent category (96%) are artifacts
of the relatively low number of absence validation samples
(Table 1).

The Medicine Lodge simulated Landsat 5§ TM classification
outperformed the true Landsat 5 TM classification of the
Medicine Lodge area (Table 2). An acceptable producer’s
accuracy for this project was determined by land managers to
be 70% given the risk associated with committing an error of
omission. The simulated classification produced acceptable
results for detecting leafy spurge infestations for incremental
cover classes with canopy cover greater than 20%. The Landsat
5 TM classification failed to produce acceptable results for
detecting leafy spurge infestations with the exception of

infestations with 71-100% cover (corresponding to a produc-
er’s accuracy of 71%). Incremental cover evaluations of the
Medicine Lodge spectrally degraded HyMap mosaic resulted in
producer’s and overall accuracies that were higher than the
HyMap classification (Table 2). The simulated Landsat 5
tended to perform slightly better than the spatially degraded
mosaic, even though the spatially degraded image retained high
spectral resolution (Table 2).

DISCUSSION

Baseline classifications of leafy spurge using HyMap imagery
produced high overall accuracies in Spencer (67%) and
Medicine Lodge (85%). These accuracies were influenced by
the inclusion of noise, which was considered an acceptable
tradeoff for minimizing the risk of committing an error of
omission. The Spencer classification accuracies are lower than

Table 1. Comparison of HyMap and Landsat 5 Thematic Mapper (TM) classifications using mixture-tuned matched filtering (MTMF) and spectral

angle mapper (SAM) for the Medicine Lodge and Spencer study sites.

Medicine Lodge Spencer Spencer area Entire Landsat 5 TM
Medicine Lodge area Landsat 5 TM HyMap using Landsat 5 TM image using SAM and
Classification HyMap using MTMF using MTMF MTMF using MTMF transformed input bands
User’s accuracy (present) 100% 89% 64% 31% 96%
User’s accuracy (absent) 60% 35% 7% 62% 30%
Producer’s accuracy (present) 80% 59% 90% 72% 30%
Producer’s accuracy (absent) 100% 75% 40% 22% 96%
Overall accuracy 85% 62% 67% 38% 46%
Kappa 0.65 0.38 0.31 —0.05 0.15
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Table 2. Incremental cover evaluations (Mundt et al. 2006) of leafy spurge using Medicine Lodge HyMap (actual and degraded) and Landsat 5

Thematic Mapper (TM) images with mixture-tuned matched filtering.

Sample size 53 51 49 44 41 37 34 29 24 15

Leafy spurge % canopy cover classes >0% >10% >20% >30% >40% >50% >60% >70% >80% 90%
HyMap (121 bands, 3.2-m pixels)

Producer’s accuracy 80% 85% 89% 88% 93% 96% 100% 100% 100% 100%

Overall accuracy 85% 88% 92% 91% 95% 97% 100% 100% 100% 100%

Kappa 0.65 0.72 0.80 0.79 0.89 0.94 1.00 1.00 1.00 1.00
HyMap: spectrally degraded (6 bands, 3.2-m pixels)

Producer’s accuracy 88% 92% 95% 97% 100% 100% 100% 100% 100% 100%

Overall accuracy 91% 94% 96% 98% 100% 100% 100% 100% 100% 100%

Kappa 0.77 0.85 0.90 0.94 1.00 1.00 1.00 1.00 1.00 1.00
HyMap: spatially degraded (121 bands, 30-m pixels)

Producer’s accuracy 59% 62% 65% 69% 72% 76% 7% 82% 83% 100%

Overall accuracy 68% 1% 73% 7% 80% 84% 85% 90% 92% 100%

Kappa 0.39 0.43 0.47 0.55 0.61 0.67 0.71 0.79 0.83 1.00
HyMap TM simulation (6 bands, 30-m pixels)

Producer’s accuracy 63% 67% 70% 2% 72% 2% 82% 82% 83% 67%

Overall accuracy 2% 75% 78% 80% 80% 81% 88% 90% 92% 93%

Kappa 0.44 0.48 0.54 0.58 0.61 0.63 0.76 0.79 0.83 0.76
Landsat 5 TM: Medicine Lodge Area

Producer’s accuracy 59% 56% 57% 53% 55% 64% 68% 71% 67% 33%

Overall accuracy 62% 61% 61% 59% 61% 68% 71% 2% 1% 67%

Kappa 0.38 0.37 0.38 0.39 0.42 0.50 0.55 0.60 0.62 0.65

those of Medicine Lodge because of lower spectral contrast
between background and target vegetation in the Spencer area.
The 2003 Deep Fire in Medicine Lodge reduced vegetation
cover and exposed burned soil throughout the study site. Leafy
spurge reestablished quickly and was a prominent landscape
feature. Field reference samples in the Spencer area had lower
average leafy spurge cover, denser shrub coverage, and less bare
ground. Accordingly, pixels containing leafy spurge in the
Spencer area were difficult to identify in the MF vs. infeasibility
plots because they tended to occur in the dense center of pixel
clouds, along with a large number of other mixed and
background pixels (Fig. 3). These factors may explain why
leafy spurge was frequently confused with riparian areas and
mixed shrub communities in the Spencer classifications.

Poor classification performance results for the entire Landsat
5 TM image were attributed to greater spectral variability and
mixing associated with a regional study area. In addition, the
sample size for the accuracy assessment was not ideal in
relation to the size of the Landsat 5 image. The simulated
Landsat 5 and actual Landsat 5 TM classification results are
inconsistent with previous work that compared simulated
Landsat Enhanced Thematic Mapper Plus (ETM+) classifica-
tions derived from AVIRIS imagery (174 bands, 4-m pixels) to
a Landsat ETM+ classification of six vegetation community
types containing target invasive species (Underwood et al.
2007). Rather, the authors reported comparable results for the
simulated and true classifications and attributed small differ-
ences in mapping accuracies to instrument differences and
calibration and geocorrection issues associated with the
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AVIRIS flightlines. It is inferred from the results presented
herein that the Landsat 5 TM simulated classification derived
from the HyMap sensor performed better than the Landsat 5
TM because of HyMap’s higher geometric resolution and
better SNR. SNRs for the HyMap sensor approach 1000:1
(Cocks et al. 1998), whereas SNRs for the Landsat 5 TM are
less than 100:1. This suggests that a sensor with comparable
spectral and spatial resolutions but improved instrumentation
could be a viable weed management resource. This inference is
supported by a recent study by Stitt et al. (2006), who used the
new Landsat prototype sensor ALI to detect leafy spurge (and
which has a higher SNR than Landsat 5 TM). Accuracy
assessment results indicated low omission errors (high produc-
er’s accuracy) and demonstrated the potential for regional leafy
spurge distribution mapping using multispectral sensors with
improved instrumentation.

Higher results for the simulated Landsat 5 TM classification
compared to the spatially degraded HyMap classification and
higher results for the spectrally degraded HyMap classification
compared to the HyMap classification suggest that fewer broad
bands may have an advantage for leafy spurge discrimination.
Within Medicine Lodge, the HyMap and the spectrally
degraded HyMap (six bands, 3.2-m pixels) provided the
highest producer’s and overall accuracies at all cover levels.
Interestingly, even when low cover values were included
(n = 53, 0-100%), both the producer’s and overall accuracies
were above 80% for both of these images. Additional research
is needed to identify which, if not all, bands were essential for
the discrimination of leafy spurge in the spectrally resampled
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classification. For example, multispectral bands in the mid-
infrared (i.e., 1.55-1.75 pm) may actually decrease unsuper-
vised leafy spurge classifications (Stitt et al. 2006).

This work demonstrates that leafy spurge is spectrally
distinct in portions of the electromagnetic spectrum that are
captured in the bandwidths of Landsat 5 TM. For example,
Lewis et al. (2000), using discriminate analysis to identify
spectral regions most critical to the discrimination of arid
Australian vegetation types, found that relative differences
across broad spectral regions were more relevant than a select
number of narrow bands. The high spectral dimensionality of
the HyMap classification could have resulted in greater
spectral noise, or less background separability, whereas
spectral noise was averaged out for the wider Landsat $§
bandwidths. Another possible noise factor to consider is that
the shift differencing technique used to estimate noise during
the MNF transformation may have reduced different net
quantities of noise in the multispectral data than in the
hyperspectral data (Kruse 2003; Mundt et al. 2007). Addi-
tional factors that could have influenced results include
resampling algorithms, the order in which the simulated image
was created (i.e., spectral resampling was applied first and
spatial resampling was applied second), and subjectivity
associated with MTMF presence or absence thresholding.
Although this study spatially degraded imagery by applying a
pixel aggregation technique to the imagery, applying a modular
transfer function to the instrument could produce different
results (Gao and Huete 2000).

The results of this study were primarily limited by
georegistration error and variables associated with field data
collection, such as sample size, sampling design, timing of data
collection, and the ocular method of estimating percent cover.
As indicated earlier, results are considered conservative in that
buffering was not applied to reference samples to accommodate
locational errors in the HyMap imagery and topographic
displacement in the Landsat scene. Maximum positional errors
were estimated at 6.11 m for the HyMap imagery and 90 m for
the Landsat imagery. The rule of thumb for the minimum
number of suggested samples within an error matrix land cover
class is 50 (Jensen 2005). This study used 41-42 samples for the
presence category and a disproportionately low number of
samples for the absence category (12-13). Sample size was
limited by the collection of additional field data at sample
locations (e.g., species diversity and microhabitat measure-
ments) as well as the need to validate each study area
independently. Ground reference samples were not completely
random due to challenges associated with the need for a priori
knowledge of infestation locations to ensure a representative
number of presence locations were sampled within a reasonable
amount of time. Although we were able to sample the Spencer
study area at the same time the imagery was acquired and leafy
spurge was in peak bloom, cover may have been underesti-
mated at the Medicine Lodge site because sampling occurred
after image acquisition and peak phenology. In addition, ocular
estimates of percent canopy cover are subjective and prone to
observer bias (Elzinga et al. 1998; Booth et al. 2003).
Uncertainties associated with ocular estimation in this study
were constrained by the use of a single observer and the
collection of subplot cover estimates using a Daubenmire
frame.
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Although study results were limited by the aforementioned
factors, they provide insight into the suitability of broadband
multispectral imagery and the relative influence of spectral and
spatial resolutions on leafy spurge discrimination. The Landsat
MTMF classification that was tuned to the Medicine Lodge
area produced the best Landsat 5 TM classification, but
accuracies and agreement (kappa value) were not high enough
to warrant exploration in applications such as historical
mapping, and surveying and monitoring of core infestations.
Significantly, the study sites in Clark County, Idaho, represent
ideal demonstration areas for leafy spurge mapping in terms of
both extent and percent cover. Therefore, if data from a true
Landsat image did not produce acceptable results here, it is
unlikely that the sensor would perform better elsewhere.

IMPLICATIONS

Although one may expect the high spectral resolution of a
hyperspectral sensor to increase the ability to distinguish leafy
spurge from its surrounding background, the results of this
study suggest that fewer broad bands may have an advantage
for leafy spurge discrimination. From a rangeland management
perspective, the prospect of multispectral sensors with im-
proved radiometric and SNR capabilities could mean cost-
effective tools for monitoring leafy spurge infestations at the
regional scale. Although sensors with these capabilities are not
readily available today, there is potential in the near term with
the Landsat Data Continuity Mission and other proposed
sensors.
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