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Abstract

Plant frequency is a pragmatic surrogate for plant density in protocols designed for the long-term monitoring of diverse
communities. Frequency estimates are based on presence/absence data from plots of fixed size, and plots are usually spatially
aggregated into sites (often transects) to reduce field effort. Using a combination of statistical models and computer simulations,
we identify sampling designs that maximize statistical power for detecting changes in underlying plant density based on the
analysis of plant frequency. The optimal plot size for collecting frequency data decreases both with increasing spatial variation
in local density (spatial structure) and with increasing numbers of plots per site. Over realistic ranges for these parameters, plots
of optimal size yield mean frequencies that vary from 20% to 80%. However, with the exception of highly overdispersed
populations, power is relatively insensitive to plot size; consequently, a plot size that yields a mean frequency of 50% usually
provides nearly maximal power. For population monitoring, in which comparisons are made between successive samples from
the same population, repeated measures from fixed sites improve statistical power substantially if there is spatial structure
among sites, provided that the spatial pattern is at least partially consistent over time. However, there is still a power loss to the
extent that the pattern of spatial structure among sites changes over time (a site-by-time interaction). This power loss can be
mitigated by increasing the spacing between plots within sites, which has the effect of increasing the within-site structure and
reducing the between-site structure. With more than 1 plot per site, there is no statistical advantage to obtaining repeated
measures from fixed plots; relocating plots within sites in successive samples may therefore be advisable to minimize disturbance
to the community.

Resumen

La frecuencia de vegetación es una alternativa pragmática a la densidad de vegetación en el monitoreo a largo plazo en
comunidades diversas. Las mediciones de frecuencia se basan en presencia o ausencia de vegetación en parcelas de un tamaño
determinado, donde éstas parcelas estan a su vez confinadas dentro de un espacio de dimensiones estándar (generalmente un
transecto) para asi facilitar el trabajo de campo. Utilizando una combinación de modelos estadisticos y simulaciones
computarizadas, hemos identificado los diseños de muestreo que maximizan la capacidad de los métodos estadı́sticos para
detectar cambios en densidad de la vegetación en base a análisis de frecuencia de vegetación. Las dimensiones óptimas de la
parcela donde se van a recolectar datos de frecuencia disminuyen tanto con la variacion espacial en densidad local (estructura
espacial) como con el numero de parcelas por sitio de muestreo. Algunas cifras reales de estos parámetros indican que las
dimensiones normales de una parcela arrojan frecuencias con valores entre un 20% y 80%. Sin embargo, con la exepción de
publaciones sumamente dispersas, la capacidad estadı́stica es relativamente insensible a las dimensiones de la parcela y, por
consecuencia, una pacela que produce una frecuencia promedio del 50% generalmente provee una capacidad muy cercana a la
cifra máxima. Para monitoreo de poblaciones en las cuales se realizan comparaciones entre muestras sucesivas para la misma
poblacion, la medición repetida de sitios de muestreo fijos incrementa la capacidad estadistica considerablemente, pero
solamente si existe una estructura espacial entre sitios de muestreo y suponiendo que el patrón espacial es suficientemente
consistente con respecto al tiempo. Sin embargo, existe todavı́a la posibilidad de que la capacidad estadı́stica se reduzca si el
patrón de estructura espacial cambia con respecto al tiempo (una interacción sitio-tiempo). Esta pérdida en la capacidad
estadı́stica se puede mitigar al incrementar el espacio entre parcelas dentro del sitio de muestreo, el cual tiene el efecto de
incrementar la estructura dentro del sitio de muestreo y de reducir la estructura dentro de éste. El tener mas de una parcela por
sitio no afecta la ventaja estadı́stica esperada por tener mediciones repetidas de parcelas fijas; sin embargo cambiando las
parcelas de lugar dentro del sitio de muestreo en muestreos sucesivos es recomendable ya que asi se minimizan disturbios a la
comunidad.
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INTRODUCTION

The long-term monitoring of a diverse plant community
requires the repeated acquisition of data on abundance and
distribution from a large number of species. The effort required
to obtain density data on such a scale is usually not practical,
thereby necessitating the use of less informative indicators of
abundance. One such indicator that has been widely used is
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plant frequency, defined as the fraction of equal-area sample
plots in which a species is present. Frequency data are often
recommended for plant population monitoring because they
are easy to obtain and are relatively stable in the face of
seasonal and interannual environmental fluctuations (Hyder et
al. 1966; Mueller-Dombois and Ellenberg 1974; Greig-Smith
1983; Kershaw and Looney 1985; Mosley et al. 1986; Smith et
al. 1986, 1987; Causton 1988; Bonham 1989; Lesica and
Hanna 2002). In the present study we examine the statistical
efficiency of frequency data and identify optimal sampling
designs for the collection of frequency data.

Sites where frequency data are to be collected must be placed
at random within the study area in order to ensure a represen-
tative sample. Because of the substantial effort involved in
locating and moving between random sites, most field studies
designed to record frequency data have used a hierarchical
sampling design, with multiple plots spatially aggregated into
each site, often along transects (e.g., Hyder et al. 1965; Mosley
et al. 1986; Smith et al. 1986; Hartnett and Fay 1998; Peet et
al. 1998; DeBacker et al. 2004). Thus, within the constraints of
a balanced, nested design, there are 3 design features that can
be adjusted when collecting frequency data: the number of
randomly located sites (n), the number of frequency plots per
site (m), and the size of each plot (as measured by the mean
number of plants per plot, d).

An optimal sampling design for collecting frequency data
will maximize statistical efficiency (statistical power or,
equivalently, estimation confidence) under the constraint of
a fixed total effort devoted to data collection. For any
particular species, the global optimum would be obtained by
maximizing statistical power simultaneously with respect to n,
m, and d. However, there are several pragmatic arguments for
performing 2 separate optimizations, 1 with respect to n and m
and the other with respect to d under the constraint of fixed n
and m. First, the amount of field effort required to collect
frequency data is strongly affected by both the number of sites
(n) and the number of plots per site (m) but is less strongly
affected by plot size (d). As a consequence, the constraint of
a fixed total effort will have a strong effect on the optimization
of n and m but a weaker effect on the optimization of d.
Second, simultaneous optimization of all 3 parameters may
lead to species-specific values for n and m, a design that is not
practical to implement. A more practical approach is to
estimate single, consensus values for n and m to be used for
all species and then employ several different plot sizes that span
the range of values that are optimal (given n and m) for the set
of species being studied.

The problem of optimizing n and m has been addressed by
Hyder et al. (1963). For a fixed total number of plots,
frequency sampling is most efficient when plots are randomly
distributed within the study area, that is, when m 5 1.
However, when the total field effort is fixed, frequency
sampling is most efficient when plots are aggregated into sites.
When plots are spatially aggregated, the efficiency of frequency
sampling is reduced if the mean local density of plants varies
among sites (spatial structure). Hyder et al. (1963) derive
values for m and n that maximize the sampling efficiency for
plant frequency, as a function of the spatial variance in
frequency among sites, the effort required to locate a site within

the study area, and the additional effort required to find and
record data from each plot within a site.

Several studies have addressed the problem of choosing an
appropriate plot size for recording frequency data. Curtis and
McIntosh (1950), Hyder et al. (1963), and Critchley and
Poulton (1998) recommend plot sizes that yield particular
intermediate frequencies or ranges of frequencies, but their
recommendations are based on informal arguments rather than
a formal analysis of statistical efficiency. Several authors have
proposed that an improved frequency value can be obtained by
combining frequency data obtained from plots of several
different sizes. Morrison et al. (1995) used computer simula-
tions to assess 2 such measures proposed by Outhred (1984)
that combine frequency data from nonoverlapping plots of
progressively increasing size. They demonstrated that these
measures are sensitive to density changes over a broader range
of densities and are less sensitive to nonrandom patterns of
dispersion than are frequency values based on a fixed plot size.
Smith et al. (1987) claimed that the sum of frequencies across
a set of nested plots provides more statistical power than do
frequency data from any one plot size. However, because the
data obtained from nested plots are not independent, the chi-
square test that these authors employed to analyze the summed
data suffers from pseudoreplication and is therefore overly
liberal. Even if their claim is correct, it may simply reflect the
larger sample size (larger number of plots) represented by the
summed data. Data from a set of plots of optimal size would
surely provide greater power than an equal number of plots of
variable size. However, combining data from plots of several
sizes does have the advantage that the same field protocol can
be applied to all species regardless of their densities.

The effect of plot size on the statistical efficiency of
frequency data has not been formally analyzed. Whysong and
Brady (1987) used computer simulations to examine statistical
power, but they emphasized the effect of plot number rather
than plot size and presented results for only 2 plot sizes
(yielding frequencies of 20% and 50%). Furthermore, they
simulated frequencies directly rather than the underlying
densities, and thus their approach cannot be used to assess
the effect of plot size on the power to detect a given change in
underlying density.

Variation in local density across the range of a study area
(spatial structure) may affect the optimal plot size for recording
frequency data, but to our knowledge this issue has not been
addressed in the literature. If local density varies among sample
plots, then the optimal plot size will vary among plots. In such
cases it is desirable to choose a single plot size that is an optimal
compromise among the locally optimal plot sizes. Previous
authors who have proposed an optimal mean frequency per
plot (Curtis and McIntosh 1950; Hyder et al. 1963; Critchley
and Poulton 1998) have implicitly assumed that the globally
optimal mean frequency is simply the arithmetic mean of the
locally optimal mean frequencies, thereby rendering spatial
structure irrelevant. This assumption is suspect and requires
investigation.

Here we present an analysis of the effects of plot size and
spatial structure on the statistical power provided by frequency
data. An essential point that has not been raised in the literature
is the fact that it is change in density rather than frequency that
is of fundamental interest, and consequently the optimal
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frequency-based test is the one that maximizes power for
detecting a specified change in density, not a specified change in
frequency. Thus, although hypothesis testing will necessarily
involve frequency comparisons, sampling designs and data
analyses should be chosen so as to maximize the efficiency of
inferences about underlying densities. Because the relationship
between density and frequency is nonlinear, designs that are
optimal for detecting changes in density are not optimal for
detecting changes in frequency. However, for a given change in
density, the resulting change in frequency is less likely to be
detected if the test is optimized for detecting frequency changes
than if it is optimized for detecting density changes. This is an
important point that has been overlooked by many previous
investigations of sampling designs for frequency estimation.

Thus, the purpose of the present study is to examine the
statistical efficiency of frequency data, with respect to
inferences on plant density, as a function of plot size, spatial
structure in plant density, and the degree of spatial aggregation
of plots. For given amounts of spatial structure and patterns of
spatial aggregation of plots, we provide optimal plot sizes for
drawing inferences on plant density from frequency data. We
also review the relationship between statistical efficiency and
the physical proximity of aggregated plots in order to provide
a comprehensive set of recommendations for collecting
frequency data.

METHODS

The model system for the power analysis includes a pair of
study areas within which frequency plots are spatially
aggregated into sites. Each plot yields a frequency value of
0 or 1, and these data are used to draw inferences about the
difference in mean density between the 2 areas. This design
corresponds to a fully nested analysis of variance (ANOVA),
with each plot providing 1 value for the response variable.
Although this binary (Bernoulli) response variable is decidedly
nonnormal, the computer simulations described below indicate
that the ANOVA test for differences between study areas is
extremely robust if the number of sites per study area (n) and
the number of plots per site (m) are both at least 5. For
example, with n 5 5 and m 5 5, the actual type I error rate in
106 Monte Carlo simulations was 0.0996 for a nominal type I
error rate of 0.10. If the number of plots per site is constant
across all sites within both areas, so that nesting is fully
balanced at the lower level, then the F test for the area effect is
identical to a 2-sample t test in which the sample mean
frequencies per site are used as the raw data. Balanced nesting
is the usual practice for the collection of frequency data, so it is
assumed for the present study. Consequently, all power
analyses are based on the 2-sample t test.

In order to find the plot size that maximizes statistical power
for each of a wide range of spatial patterns in density, power
must be determined for many different sets of parameter values.
Although exact results can be obtained by computer simula-
tion, the number of simulations called for would require
prohibitive amounts of computer time. To avoid this problem,
the plot size that maximizes statistical power was estimated by
obtaining an approximate expression for the expected value of
the test statistic for the t test, E(T), and then finding the plot

size that maximizes E(T). The reliability of this approach was
assessed by comparison with direct computer simulations of
statistical power. The approximation for E(T) was obtained by
replacing each constituent estimator with its expected value,
yielding

E Tð Þ& mA { mBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V �ffA

� �
z V �ffB

� �q , [1]

where m is the true mean frequency within a study area, f̄ is
the estimated mean frequency within a study area, and V(f̄)
is the true variance of the frequency estimator. To obtain an
expression for V(f̄), we note that the actual frequency (0 or
1) for the jth plot (from 1 to m) within the ith site (from 1 to
n) can be written as the sum of independent terms, fij 5 m +
si + pij, where mi 5 m + si is the mean frequency in site i and fij

5 mi + pij is sampled from a Bernoulli distribution with
mean mi. Because site and plot frequencies are written as
deviations from the mean, Es(si) 5 0 and Ep(pij) 5 0, where
Es(?) is the expectation across sites and Ep(?) is shorthand
for Ep(?|s), the expectation across plots within a site. The

quantity Es(s
2
i ) 5 s 2

s is the spatial variance in frequency

among sites, and Ep(p 2
ij) 5 mi(1 2 mi) is the Bernoulli

variance. Using this notation, the standard variance de-
composition for the nested design can be written as

V f
� �

~
s2

s

n
z

V pð Þ
nm

, [2]

where V(p) is the variance in the value of the frequency
deviation pij among all possible plots of the designated size.
Noting that

V pð Þ~ EsEp p2
ij

� �

~ Es mi { m2
i

� �

~ m { Es m z sið Þ2

~ m 1 { mð Þ{ s2
s ,

[3]

equation [2] can be written as

V f
� �

~
m 1 { mð Þz m { 1ð Þs2

s

nm
: [4]

Inserting equation [4] into equation [1] provides an ap-
proximate expression for E(T) as a function of the mean (m)

and spatial variance (s 2
s ) of plant frequency within each of

the 2 study areas, the number of sampling sites (n) per study
area, and the number of frequency plots (m) per site.

To express E(T) in terms of plant densities rather than
frequencies, probability distributions must be specified for the
variation in mean density across sites within a study area and
for the variation in mean density among plots within a site.
Parameters of the frequency distribution can then be expressed
in terms of parameters of the density distribution. To make
these expressions analytically tractable, both density distribu-
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tions were assumed to be uniform. More complicated distribu-
tions, such as a truncated normal or a beta distribution, might
more closely approximate the actual spatial distribution of
plant densities in any particular population. However, because
of the monotonic relationship between density and frequency,
spatial variance in density will be the major determinant of
spatial variance in frequency, with the specific shape of the
density distribution having only secondary effects. Although
the conversion from density parameters to frequency parame-
ters is tractable with uniform density distributions, the
computations are complex and require numerical approxima-
tions. Descriptions of the algorithms that were used to perform
these computations are posted at http://biology.missouristate.
edu/faculty_pages/Heywood/Heywood.htm.

The magnitude of spatial structure in plant density at each
scale is measured by the relative range of the uniform
distribution of plant densities (rp for structure among plots
within sites, rs for structure between sites). Thus, if site i has
a mean density per plot of di, then within site i the local
densities vary uniformly from di(1 2 rp) to di(1 + rp). Possible
values for the relative density range within a site vary from
a minimum of rp 5 0 (no density structure within the site) to
a maximum of rp 5 1 (local densities vary uniformly from 0 to
2di plants per plot). Similarly, if an entire study area has a mean
density per plot of d, then the mean density per site varies
uniformly from d(1 2 rs) to d(1 + rs). Finally, on the scale of an
individual plot, plants are assumed to be distributed at random
in space so that the actual number of plants in a particular plot
is sampled from a Poisson distribution.

With this model, the maximum possible value for the
frequency variance among sites is s 2

s 5 0.0661, which is
obtained when rs 5 1, rp 5 0, and the mean frequency across all

plots is m 5 0.70. This is not an unusually large amount of
spatial structure. For example, 18 fixed sites within 2 370 ha of
the Tallgrass Prairie National Preserve (Kansas) have yielded
estimates for s 2

s that range from 0.019 to 0.059 for 8 focal

species (DeBacker and Heywood, unpublished data).

Statistical power was estimated by Monte Carlo simulation.
For specified values of rp, rs, the percent difference in mean
density between study areas, and the type I error rate for
statistical testing, simulated data sets were generated and
analyzed as follows. First, for each site within a study area, the
mean density per plot, di, was sampled from a uniform
distribution with mean d and range 2rsd, where d was the
mean density per plot for the entire study area. Second, for each
plot within site i, the local density dij was sampled from
a uniform distribution with mean di and range 2rpdi. Third, the
actual number of plants in plot j of site i was sampled from
a Poisson distribution with mean dij. Next, densities were
converted to frequencies, and the sample mean frequency for
each site was calculated. Finally, the simulated data set was
analyzed using a 2-sample t test, and the null hypothesis of
equal mean frequencies in the 2 study areas was either rejected
or not rejected. This entire process was repeated 100 000 times.
The power of the t test is estimated as the fraction of these
100 000 random data sets that led to rejection of the null
hypothesis. All power simulations were conducted with a type I
error rate of 10%; this is an arbitrary choice and does not affect
the sampling design features that maximize power.

The estimates of E(T) and the power simulations described
above both assume that plants are randomly distributed within
the vicinity of a plot. Plant populations sometimes have
negative spatial structure on a local scale; that is, they are
sometimes overdispersed relative to a Poisson distribution. To
investigate the consequences of local overdispersion, power
simulations were performed for a limited number of sets of
parameter values. The simulations were as described above,
except that each plot was assumed to be located within a local
area where the plants were arranged uniformly into a square

lattice with a spacing of
ffiffiffiffiffiffiffiffiffiffi
a
�

dij

q
. Circular plots of area a were

located at random within this lattice to record frequency
data. It was not possible to get a closed expression for E(T)
with this sampling model.

All simulation programs were written in Fortran and were
compiled in the MS Windows XP environment using MS
Fortran Powerstation.

RESULTS

The plot size that maximizes statistical power is indistinguishable
from the plot size that maximizes the approximate expected value
of the T statistic (Fig. 1). Thus, maximizing E(T) is an efficient

Figure 1. Estimated statistical power for a 5 0.1 (symbols) and
expected value of the T statistic (curve) as a function of plot size for a 2-
sample t test comparing the mean frequencies of 2 populations between
which there is a 10% difference in mean density. A, rs 5 rp 5 0 (no
spatial structure), n 5 100, and m 5 20. B, rs 5 rp 5 1 (maximum
spatial structure), n 5 1000, m 5 20.
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way to identify the plot size that maximizes statistical power. This
plot size will henceforth be referred to as the optimal plot size.

Figure 2 displays the optimal plot size (represented as the
mean frequency per plot) as a function of the number of plots
per site (m), the range of density variation among sites (rs), and
the range of density variation among plots within sites (rp).
These optima were obtained by maximizing E(T) under the
assumption that plants are randomly distributed in space
within the vicinity of each plot. The optimal plot size decreases
with increasing values of both rs and rp (Fig. 2). In the absence
of spatial structure among sites (rs 5 0), the optimal plot size is
not affected by the number of plots per site, with plots of
optimal size yielding mean frequencies that range from a high
of 0.798 when rp 5 0 to a low of 0.563 when rp 5 1. However,
if there is spatial structure between sites (rs . 0), then as the
number of plots per site increases, the optimal plot size
decreases, and the effect of structure within sites lessens. In the
most extreme case that was considered (rs 5 1, m 5 64), the
optimal plot size yields a mean frequency of only about 20%,
and this value is only weakly affected by the amount of spatial
structure within sites (Fig. 2).

When plants are uniformly distributed within the vicinity of
individual plots (i.e., plants are highly overdispersed on a local
scale), power simulations indicate that the optimal frequency is
always shifted toward a more intermediate value (closer to
50%; Fig. 3). If, in addition, spatial structure is absent or weak,
then power drops off much more rapidly as plot size deviates
from the optimum than is the case when plants are randomly
distributed on a local scale (Fig. 3A). However, this effect of
overdispersion is virtually eliminated by a moderate amount of
spatial structure (Figs. 3B–3D).

Figure 4 demonstrates the effects of spatial structure on
statistical power when frequency data are always collected
using the optimal plot size. Spatial structure within sites (rp .

0) has very little effect on statistical power regardless of the
number of plots per site (Figs. 4A and 4B). If frequency plots
are not spatially aggregated into sites (m 5 1), then spatial
structure among sites (rs . 0) likewise has very little effect on
statistical power (Figs. 4C and 4D). However, when plots are
spatially aggregated within sites, spatial structure among sites
reduces power substantially, and this effect increases with
increasing numbers of plots per site (Figs. 4C and 4D).

Figure 2. The mean frequency measured by plots of optimal size, as a function of the magnitude of spatial structure in density among plots within
sites (rp), the magnitude of spatial structure in density among sites (rs), and the number of plots per site (m).
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DISCUSSION

Plot Size
Plot size affects both the numerator and the denominator of the
T statistic, and as a consequence the relation between plot size
and statistical power is complex and not intuitively obvious.
Plot size affects the numerator of the T statistic because it
affects the sensitivity of frequency to changes in density. The
plot size that maximizes the sensitivity of frequency to changes
in density and hence that maximizes the numerator of the T
statistic depends on the amount of spatial structure both within
and between sites. With no spatial structure and a Poisson
distribution of individuals within plots, the numerator is
maximized when there is an average of 1 individual per plot,
which corresponds to a mean frequency of 0.632. This is the
result that led Curtis and McIntosh (1950) to propose that the
optimal plot size for collecting frequency data will yield a mean
frequency of 0.63. When spatial structure is present, the plot
size that maximizes the sensitivity of frequency to changes in
density will yield a mean frequency that is less than 0.632, with

the mean frequency decreasing as the magnitude of spatial
structure increases.

Plot size also affects the denominator of the T statistic, and as
a consequence the plot size that maximizes statistical power can
deviate considerably from the plot size that maximizes the
sensitivity of frequency to changes in density. Plot size affects
the denominator of T because it affects the precision with
which frequencies are estimated. The variance of a frequency
estimate is proportional to m(1 2 m) + (m 2 1)s 2

s , where m is the
actual mean frequency per plot and s 2

s is the spatial variance in
mean frequency among sites (equation [4]). If there is no spatial
structure among sites (s 2

s 5 0) or if plots are not spatially
aggregated into sites (m 5 1), then the frequency estimate is
least precise (has the highest variance) when it is based on a plot
size that yields a mean frequency of m 5 0.5, and precision
increases symmetrically as plot size is either increased or
decreased away from this value. When plots are aggregated
within sites (m . 1), spatial structure among sites reduces the
precision of the frequency estimate because data collected from
multiple plots within the same site are correlated (pseudo-

Figure 3. Estimated statistical power (for a 5 0.1) as a function of plot size (represented by the mean frequency it measures) for a 2-sample t test
comparing the mean frequencies of 2 populations between which there is a 10% difference in mean density. In the vicinity of individual plots, plants
were either distributed randomly in space (solid symbols) or highly overdispersed (open symbols). The number of plots per site was fixed at m 5 20.
A, rs 5 rp 5 0 (no spatial structure). B, rs 5 1, rp 5 0 (structure between sites only). C, rs 5 0, rp 5 1 (structure within sites only). D, rs 5 rp 5 0.5
(modest structure at both scales).
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replication). The spatial variance in frequency, s 2
s , and hence

its contribution to the variance of the frequency estimate, will
be maximal for a plot size that yields an intermediate mean
frequency and will decrease toward 0 as plot size is either
increased from this value (and m approaches 1) or decreased
from this value (and m approaches 0). Thus, in general, the
denominator of T will be largest for plots that yield an
intermediate mean frequency and will decrease asymmetrically
toward 0 as the plot size is decreased or increased away from
this intermediate value.

Combining these 2 effects of plot size, the T statistic (and
hence statistical power) is maximized by a plot size that yields
the mean frequencies displayed in Figure 2. In the absence of
spatial structure, plots of optimal size yield a mean frequency of
0.798, considerably higher than the value of 0.62 proposed by
Curtis and McIntosh (1950). The optimal plot size is reduced
by spatial structure, and this effect is enhanced when plots are
aggregated within sites. In the most extreme case that was
considered (rs 5 1, m 5 64), the optimal plot size yields a mean
frequency of less than 0.2, a surprisingly low number.

Thus, the optimal plot size depends greatly on the amount of
spatial structure in density, information that generally is not
available when a monitoring protocol is being designed.
Fortunately, however, statistical power is affected only weakly
by deviations from the optimal plot size, with 1 exception. The
exception occurs when plants are overdispersed in the vicinity
of plots and spatial structure is weak or absent (Fig. 3A). This
combination of features requires that the population be
uniformly overdispersed at the same spatial scale over the
entire study area. Intraspecific competition may generate
overdispersion for dominant species within a community of
very low diversity (e.g., Fonteyn and Mahall 1981), but such
a pattern is unlikely for a population that is embedded within
a community of high diversity with multiple codominant
species. Furthermore, even if competition does generate local
overdispersion, local density is unlikely to be uniform across
the spatial extent of a management unit. Therefore, for most
species, statistical power is nearly optimized across a broad
range of plot sizes. In fact, over the entire range of possible
values for rp and rs, a plot size that returns a mean frequency of

Figure 4. The effects of spatial structure (rp and rs) and the number of plot per site (m) on estimated statistical power (for a 5 0.1) when plots of
optimal size are always used. For each power curve, the number of sites per population (n) was adjusted so that power equals 0.99 when the
abscissa equals 0. A, Effect of structure within sites (rp) when there is no structure between sites (rs 5 0). B, Effect of structure within sites (rp) when
there is maximum structure between sites (rs 5 1). C, Effect of structure between sites (rs) when there is no structure within sites (rp 5 0). D, Effect
of structure between sites (rs) when there is maximum structure within sites (rp 5 1).
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0.5 will provide nearly optimal power for most species (Fig. 3).
Thus, in most communities, a sampling protocol that includes
frequency plots of several different sizes spanning 1 to 2 orders
of magnitude should include at least 1 plot size that yields
statistical power close to the maximum that is possible for any
particular species.

Plot Arrangement
Spatial structure has a strong effect on statistical power when
plots are spatially aggregated into sites. Even if plots of optimal
size are always used, power diminishes rapidly with increasing
structure among sites (Figs. 4C and 4D). In contrast, spatial
structure within sites has little effect on power (Figs. 4A and
4B). Thus, statistical power is greatly improved when all the
spatial variation in density resides between plots within sites
and none resides between sites. Spatial variation in plant
density is an intrinsic feature of the population being monitored
and cannot be modified by experimental design. However, the
allocation of this variation to within-site and between-site
components depends on how plots and sites are distributed in
space. For a fixed spatial pattern of variation, as the distance
between plots within a site is increased, the spatial variation
within sites increases, and the spatial variation among sites
decreases. And if individual sites cover a sufficiently large area,
all the spatial variation will reside within sites, and none will
reside between sites. This is the sampling design that would
maximize statistical power. In fact, if this design were
implemented, then pseudoreplication would be eliminated,
and it would no longer be necessary to perform a nested
ANOVA. However, in practice, it is normally not possible to
know that the separation between plots within a site is
sufficient to eliminate pseudoreplication, so the nested
ANOVA is always advisable. Nonetheless, the power of the
nested ANOVA is increased substantially by reducing the
spatial structure among sites (Fig. 4), so it is also always
advisable to disperse plots over as large an area as possible
within a site.

Community Monitoring
The analyses presented here have been couched in terms of
a comparison between independent samples obtained from
separate study areas. However, the results apply equally well
when the comparison is between samples from the same study
area taken at different points in time, as is the case when
a community is being monitored. If the samples are independent,
that is, if sample sites are located at random during each sampling
episode, then all analyses and conclusions apply exactly.
However, it is more common to return to the same sampling
sites, yielding repeated measures from fixed sites. In this case, the
appropriate analysis is a repeated-measures ANOVA, and all
conclusions presented above still hold provided that the spatial
variance in frequency among sites (s 2

s ) is replaced with the site-
by-time interaction variance. If the pattern of spatial variation in
density is highly consistent over time (i.e., there is little or no site-
by-time interaction), then the variation among sites will be
factored out by the repeated-measures ANOVA, and power will
be as high as possible even if plots are tightly packed into sites. At

the other extreme, if the pattern of spatial variation in density
shows no consistency between sampling periods (i.e., all the
spatial variance among sites contributes to the site-by-time
interaction variance), then samples from different time periods
will be statistically independent, and all conclusions presented in
previous paragraphs apply exactly. The degree to which spatial
patterns in density will be consistent over time cannot be known
in advance, so it is always advisable to disperse plots over as large
an area as possible within a site so as to minimize the site-by-time
interaction variance.

Even when plots are widely spaced within sites, there can be
no assurance that the site-by-time interaction variance has been
reduced to 0, so the repeated-measures ANOVA still must nest
plots under sites to avoid pseudoreplication. In such an
analysis, the appropriate error variance for testing temporal
changes in mean frequency (the main effect of time) is the site-
by-time interaction mean square. As a consequence, there is no
statistical advantage to obtaining repeated measures from plots
within sites. Furthermore, there are well-known disadvantages
to fixed plots; relocating small plots can be very difficult and
time consuming, and returning to the same plots may cause
significant disturbance to the community being monitored.
Thus, no extra effort should be expended in relocating plots in
successive sampling episodes, and it might even be wise to
deliberately relocate plots within the fixed sites.

MANAGEMENT IMPLICATIONS

Assessment of the effects of specific rangeland management
practices requires long-term monitoring of species abundance
in conjunction with controlled management protocols. Foliar
cover is the most commonly used measure of plant species
abundance in large-scale monitoring programs. However, cover
may respond strongly to short-term environmental fluctua-
tions, greatly weakening the coupling between cover and
density. This decoupling may be a particular problem in
grasslands where aboveground biomass is regenerated annually
and grazing intensity can be highly variable in space and time.
In response to this concern, the Heartland Network Inventory
and Monitoring Program within the National Park Service has
been conducting a prototype monitoring program at Tallgrass
Prairie National Preserve (Cottonwood Falls, KS) in which both
frequency and cover are being evaluated as indicators of
abundance (http://www1.nature.nps.gov/im/units/htln/index.
htm). The present study was undertaken to help guide the
design of this prototype program. It is anticipated that plant
frequency will be a useful measure of species abundance in
other heavily grazed herbaceous communities where long-term
monitoring is to be implemented.

For managers who wish to include frequency plots in their
monitoring protocol, 3 recommendations for maximizing
statistical efficiency emerge from this study: 1) a plot size that
returns a mean frequency close to 50% is nearly optimal over
a broad range of values for the magnitude of spatial structure;
2) frequency plots within the same site (often located along
transects) should be dispersed over as large an area as possible;
and 3) study sites, but not individual frequency plots, should be
permanently marked and resampled over time.
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