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Abstract

With the development and commercial availability of submeter spatial resolution satellite imagery, geospatial tools can better
accommodate the needs of range professionals than ever before. However, with these new tools comes a new set of challenges.
Range managers and range scientists must now 1) better understand and take advantage of the geotechnical tools at their
disposal, 2) collect field observations/measurements in ways that act synergistically with these tools, and 3) utilize high-accuracy
global positioning system (GPS) receivers. To produce reliable rangeland models it is important to collect field data that
correspond with what the satellite “sees.” Further, it is frequently necessary to use high-resolution imagery, which subsequently
necessitates the use of high-accuracy GPS receivers to ensure field data are recorded in the correct pixel and properly
coregistered. This paper describes the results of research and experimentation that have led to the development of techniques to
improve geospatial rangeland applications. For optimal classification accuracy, field data collected for use in remote sensing
applications should estimate/measure ground cover using general vegetation community types and must never exceed 100%.
Further, the field sample sites used for classification must be located using a GPS receiver with accuracy < 50% of the size of
satellite imagery pixels (e.g., if Landsat imagery is used—with 28.5-m pixels—the GPS receiver must be able to achieve = 14 m
accuracy with 95% confidence). Finally, a series of best practices are suggested to help range managers and range scientists
better understand and implement geospatial technologies.

Resumen

Con el desarrollo y disponibilidad comercial de imagenes de satélite de resolucion espacial de menos de un metro, las
herramientas geoespaciales pueden satisfacer, mejor que antes, las necesidades de los profesionales del manejo de pastizales. Sin
embargo, con estas nuevas herramientas viene un nuevo grupo de retos. Los manejadores de pastizales y cientificos de esta
disciplina ahora deben: 1) entender mejor y tomar ventaja de las herramientas geotécnicas a su disposicion, 2) colectar
observaciones/mediciones de campo en formas de que act@en sinérgicamente con estas herramientas y 3) utilizar recibidores de
sistemas de posicionamiento global de mayor exactitud. Nuestros resultados indican que para producir modelos de pastizales
confiables es importante colectar datos de campo que correspondan con lo que los satélites “ven.” Mas aun, frecuentemente es
necesario usar imagenes de alta resolucién las cuales subsecuentemente necesitan el uso de recibidores de sistemas de
posicionamiento global de alta precision para asegurar que los datos de campo estan registrados en el pixel correcto y co-
registrados adecuadamente. Se discuten varias técnicas y se sugieren una serie de mejores practicas para ayudar a los
manejadores y cientificos de pastizales a entender mejor e implementar esta tecnologia.
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INTRODUCTION

Sampling vegetation in the field that results in an accurate
description of rangelands is an age-old problem (Pechanec and
Pickford 1937; Daubenmire 1958), and collecting field or
ground-truth data is critical to the success of any remote sensing
or geographic information system (GIS) project. However,
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applying traditional ecological vegetation sampling techniques
directly to geotechnical studies frequently fails to yield highly
accurate and reliable classifications (Witt and Weber 2001).

In July 1972, Landsat Multi-Spectral Scanner was launched
into orbit (US Geological Survey 2003). This remote sensing
satellite offered natural resource scientists the first significant
platform on which to analyze the earth’s surface for land-
scape-level vegetation characteristics. Whereas this satellite
represented an enormous advance in geotechnical capabilities,
it fell far short of the needs and demands of the range
community, due to the sensor’s spatial resolution (pixel size of
80 m) and the small number (i.e., 4) of spectral bands;
detailed (and reliable) models of shrub cover or bare earth
exposure was not possible. In addition, the heterogeneity and
complexity of rangeland plant communities and the fact that
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Table 1. Cover classes used for detailed classification of sagebrush-
steppe rangelands (total cover could not exceed 100%).

Shrub Grass Rocks/bare

Class cover cover soil/lichen crust
Rocks/bare soil/lichen crust 1%-5% 1%-5% > 36%
Low grass 1%-5% 6%—-15% > 36%
Medium grass 1%-5% 16%—-25% > 36%
High grass 1%-5%  26%-35% > 36%
Low grass/shrub mix 6%-15%  6%—15% > 36%
Medium grass—low shrub mix 6%-15%  16%—25% > 36%
High grass—low shrub mix 6%—-15% > 36% < 36%
Medium shrub—low grass mix 16%-25%  6%—-15% > 36%
Medium grass/shrub mix 16%-25% 16%-25% < 36%
Medium grass/shrub with

rocks/bare soil/lichen crust 16%—-25%  16%-25% > 36%
High shrub 26%-35%  1%-5% > 36%
High shrub-low grass mix 26%-35%  6%-15% < 36%
High shrub-low grass mix with

rocks/bare soil/lichen crust 26%-35%  6%—15% > 36%
High shrub—medium grass mix 26%-35% 16%—25% > 36%
Very high shrub > 36% 1%-5% > 36%
Very high shrub—low grass mix > 36% 6%—15% < 36%
Very high shrub—low grass mix

with rocks/bare soil/lichen crust > 36% 6%-15% > 36%

individual plant cover and leaf area index are low compared
with forested ecosystems resulted in relatively low classifica-
tion accuracies; < 75% overall accuracy (McMahan et al.
2000, Johnson et al. 2001). Today, high spatial resolution
multispectral satellite imagery (pixel size of <35 m) are
commercially available, and so are sophisticated hyperspectral
remote sensing platforms that record more than 100 spectral
bands of data across the electromagnetic spectrum. Coupled
with thousands of global positioning system (GPS) base
stations and state-of-the-art GPS receivers, the range commu-
nity has the ability to analyze the earth’s surface with
unprecedented resolution and reliability.

While these readily available technologies have the potential
to accurately and reliably monitor rangelands, they also bring
with them a new set of challenges. To obtain successful analyses
and classifications (> 75% overall accuracy; Goodchild et al.
1994; J. Pettingill, personal communication 2002), high spatial
resolution remote sensing imagery (pixel size < 2.5 m) must be
georegistered very well (root mean square error < 1 m), and
field observation points must be accurately located (= 1 m).
Generally, any single point can be geolocated only to
within = 0.5 pixel for raster and grid data. When using
Landsat Thematic Mapper (TM) imagery, this means the
horizontal positional accuracy of field locations could not
exceed = 14 m. Such generous error margins are easily satisfied
today with even fairly simple GPS receivers (Serr et al. 2005).
However, when using high spatial resolution imagery, accept-
able horizontal positional accuracy is concomitantly reduced.
For example, the horizontal positional accuracy required of
data used with Digital Globe’s Quickbird imagery (pixel size of
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2.4 m) is = 1.2 m. To satisfy the latter accuracy requirement
involves the use of more sophisticated GPS receivers and more
stringent data collection protocols. Classification accuracy is
substantially decreased with poor geolocation accuracy (Peleg
and Anderson 2002).

In addition to these considerations and challenges, to extract
reliable information from hyperspectral remote sensing data
requires the application of advanced classification tools such as
fuzzy classification (McMahan et al. 2003), spectral angle
mapper (Kruse et al. 1993), or mixture-tuned match filtering
(Boardman 1998; Parker-Williams and Hunt 2002, 2004;
Mundt 2003).

This paper will present 3 challenges confronting range
managers and range scientists using the geotechnologies in
their decision-making process. These challenges are: 1) to better
understand and take advantage of geotechnical tools, 2) to
collect field observations/measurements in ways that act
synergistically with these tools, and 3) to utilize high-accuracy
GPS receivers for image rectification and coregistration with
field observation sites. These challenges and potential solutions
will be described. Following this, a series of best practices will
be suggested.

METHODS

To determine optimal field sampling design for sagebrush-
steppe rangeland remote sensing studies in southeastern Idaho,
we compared 2 vegetation sampling techniques. The first
followed traditional vegetation sampling techniques and con-
sisted of a 20-m baseline directly north of each randomly
located sample point. At 10-m increments (0, 10, and 20 m)
along the base line, 3 25-m transects were read east of the base
line. Ground cover was recorded along each transect at 1-cm
resolution using a steel tape measure and meterstick placed
perpendicular to the ground surface. All cover intersecting the
meterstick was classified as bare soil, rock, litter, herbaceous,
graminoid, or woody plants. Percent cover for each class of
vegetation was then calculated. While an accurate record of the
vegetation found at each site was collected, total ground cover
frequently exceeded 100%, making application of these data
very difficult for remote sensing classification unless they were
generalized. The second vegetation sampling technique con-
sisted of simple ocular estimates of ground cover (using the
same cover type categories listed above) found within the area
occupied by 1 pixel, which was presumed to be centered over
each randomly located sample point. This method was designed
to estimate the percent cover “seen” by a satellite. Percent cover
was estimated using categorical breaks of 0%, 1%-5%, 6%—
15%, 16%-25%, 26%-35%, 36%—-50%, 51%-75%, 76 %—
95%, and 96%-100% (Weber and McMahan 2003).

We experimented with numerous classifications using both
types of field data and report here the result of 2 of those
classifications. The first attempts a very detailed classification
using 17 cover classes (Table 1). The second uses simplified
cover category data generalized into 7 classes (Table 2). In both
cases, Landsat 5 TM data were used, which have a spatial
resolution of 28.5 X 28.5 m pixels. Following this, validation of
each model was performed using traditional bootstrap estima-
tion techniques (Efron 1979; McMahan and Weber 2003) and
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Table 2. Cover classes used for general sagebrush—steppe rangeland
classification (total cover could not exceed 100%).

Table 3. Accuracy and precision of global positioning system (GPS)
receivers.’

Shrub Grass Rocks/bare Applicable image  Effective

Class cover cover  soil/lichen crust  GPS receiver Accuracy  Precision resolution map scale
Grass with rocks/bare soil/llichen crust < 16% > 16% > 26% Trimble ProXR + 0.78 + 0.46 >16m 1:925
Grass <16% > 16% < 26% Trimble GeoXT? + 0.96 + 0.66 >20m 1:1100
Shrubs with rocks/bare soil/lichen crust > 16% < 16% > 26% Trimble Geoexplorer I + 3.25 + 290 >6.5m 1:3 800
Shrubs >16% < 16% < 26% "alues are expressed in meters at the 95% Cl using a 120-position average per point
Grass and shrub mix with rocks/ (n = 70 points). All results are reported using postprocess differential correction.

bare soil/lichen crust >16% > 16% > 26% ZU;gsg[pr\glcl(;::i\nr;a Augmentation System real-time differential correction along with
Grass and shrub mix >16% > 16% < 26%
Rocks/bare soil/lichen crust <16% < 16% > 26%

kappa statistic (Titus et al. 1984; Congalton and Green 1999).
Bootstrap estimation is a technique whereby a subset of
hypothetical samples is drawn from an original larger sample
set. These subsets are then iteratively analyzed and accuracy
determined using the inverse or unused subset. To readily
compare both types of field data for this paper, separability
was calculated using the Transformed Divergence Index (Ri-
chards 1993; Lillesand and Kiefer 2000). Separability statistics
calculate the statistical “distance” between classification
categories. The separability value of the spectral signatures
derived for each class of training site provides a measure of
classification accuracy. In essence, this statistic determines how
discrete each category or class of data is, based on the spectral
signatures extracted from available imagery. While no minimum
number of sites per class was imposed to calculate separability,
only those classes containing at least 30 training sites were
evaluated in this part of the study. The significant separability
threshold was set at 1 500 in accordance with values suggested
by other authors (Richards 1993).

To explore the potential advantage of using high spatial
resolution imagery, we compared classifications of leafy spurge
infestations in southeastern Idaho using Landsat (pixel size of
28.5 m), Systém pour d’Observation de la Terre 5 (SPOT 3)
(pixel size of 10 m), and Quickbird (pixel size of 2.4 m) satellite
imagery. Classifications were made using 253 stratified-random
field observation points collected during summer 2002. Vali-
dation was then performed using standard bootstrap techniques
and calculated as an error matrix with kappa statistic. The
criteria used for evaluation were cost-effectiveness and classi-
fication accuracy, for which an accurate and reliable classifica-
tion is defined as having > 75% accuracy with minimal
omission error.

To consistently satisfy georegistration and coregistration
requirements and effectively use available high spatial resolu-
tion imagery requires the use of sophisticated GPS receivers and
the implementation of more stringent data collection protocols.
To establish these protocols we experimented with 3 types of
GPS receivers (Trimble ProXR, Trimble GeoXT, and Trimble
GeoExplorer II). A primary difference between these receivers
is that the ProXR and GeoXT are 12-channel receivers (i.e.,
12 satellites can be connected simultaneously allowing the
receiver to select the optimal geometric configuration), whereas
the GeoExplorer II is a 6-channel receiver. In addition, the
GeoXT can utilize the Wide-Area Augmentation System
(WAAS) for real-time differential correction. In all experiments,
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estimations were acquired only when a minimum of 4
concurrent GPS signals were processed, 120 positions were
averaged per point with a 95% confidence interval (CI) to
indicate location error, and the mask for Position Dilution of
Precision (PDOP) was set at 5.0. Because GPS estimates
location on the basis of triangulation, PDOP masks are used
to ensure optimal satellite geometry (i.e., the satellites used are
not clustered close to each other). All locations were evaluated
in raw format and were processed after differentially correcting
the format, and evaluated for horizontal positional accuracy
relative to the location of the ground control points of
Pocatello, Idaho, which were established using traditional
survey methods and survey-grade GPS with real-time differen-
tial correction from a US Geodetic continuously operating
reference station (Table 3).

RESULTS AND DISCUSSION

Field Sampling for Rangeland Remote Sensing

Table 4 describes the separability of 253 training sites into
17 cover categories. Only 4 categories contained a sufficient
number of training sites (> 30) to develop reliable spectral
signatures. Of these, 3 of the classification categories were
found to be statistically separable with Transformed Diver-
gence Index scores exceeding 1 500 (Richards 1993; Lillesand
and Kiefer 2000) (Table 4). Class 8 is separable from class 13
on the basis of an increase in shrub cover from 16%-25%, to
26%-35%. Class 8 is also separable from class 15 on the basis
of an increase in shrub cover from 16%-25% to > 36% and
a loss of grass cover from 6%-15% to 1%—5%. Finally, class
13 is separable from class 15 on the basis of an increase in
shrub cover from 26%-35% to > 36% and a loss of grass
cover from 6%-15% to 1%—5%. The data were then combined
into 7 general cover categories (Table 2) and re-evaluated for
separability. Seventy-one percent (15 of 21) of these categories
were statistically separable with Transformed Divergence Index
scores > 1 500 (Table 5).

These analyses show that even with high spatial resolution
data, there is a limit to the amount of usable information that
can be obtained by remote sensing. Even with a sufficient
number of training sites, many of the classes in Table 1 would
still not be separable because the signatures also depend on the
soil background reflectance (Asner 2004). Reliable subspecies
differentiation of plants has not been demonstrated, nor has
reliable differentiation of similar grasses and shrubs (e.g.,
differentiating crested wheatgrass from bluebunch wheatgrass)
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Table 4. Separability of training sites using 17 detailed cover categories calculated using the transformed divergence index."

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Ci6  C17
C1 0
c2 0 0
C3 1999 0 0
C4 2000 0 1999 0
C5 1999 0 835 0 0
C6 1999 0 1995 1829 1999 0
C7 1761 0 1999 2000 1999 1999 0
C8 1999 0 5.72 0 61 1999 1999 0
C9 1999 0 1999 1999 1999 1623 1999 1999 0
C10 1999 0 1170 0 968 1999 1999 1137 2000 0
C11 1999 0 608 0 114 1998 1999 107 1999 995 0
C12 2000 0 1999 0 1999 2000 2000 1999 2000 2000 1999 0
C13 2000 0 1999 0 199 2000 2000 1999 2000 2000 1999 0 0
C14 2000 0 2000 2000 1999 1999 1999 121 2000 2000 2000 2000 2000 0
C15 2000 O 871 0 272 1999 1999 1999 2000 1442 308 1995 2000 2000 0
Cl6 1999 0 2000 2000 1999 1999 1999 1999 1999 2000 1999 2000 2000 2000 2000 0
Cl7 1426 0 1999 1999 1998 1999 1606 2000 1999 1999 1999 2000 2000 2000 1999 2000 0

TCategories C5, C8, C13, and C15 had a sufficient number of training sites (n > 30). Of these, 3 were statistically separable based on a transformed divergence index > 1 500. The separable
cover classes are those where shrub cover exceeds 16%, bare ground exceeds 36%, and minimal grass cover is present.

with multispectral imagery. Field observation sites must be
collected appropriately for image processing regardless of the
desired mapping or modeling result. In other words, field
personnel must collect measurements and observations that
will correspond with what the satellite “sees” (i.e., collecting
data describing functional group and vegetation structure is
typically more useful than species-level differentiations with
multispectral imagery unless the target species has a very
distinctive spectral signature [e.g., blooming leafy spurge]
present when the imagery was acquired, and at high enough
abundance within the imagery to allow for easy detection).

Achieving accurate and reliable classification (> 75% over-
all accuracy) of rangelands with models built from multispec-
tral satellite imagery requires the use of categorical training site
data. Applying training data that are more detailed (i.e., cover
data collected at species levels) frequently results in unaccept-
ably poor accuracy.

Selection of Appropriate Spatial Resolution

Using imagery with better spatial resolution has allowed
researchers to improve classification accuracy relative to plat-
forms such as Landsat TM. Figure 1 illustrates mean classifi-

Table 5. Separability of training sites using 8 cover categories calcu-
lated using the transformed divergence index.’

C1 C2 C3 C4 C5 C6 C7
C1 0
C2 1973 0
C3 1999 569 0
C4 1090 1999 1999 0
C5 1801 1733 1710 1732 0
C6 1293 914 7.92 1608 518 0
c7 2 000 2000 2000 2 000 2000 2000 0

TAIl categories had a sufficient number of training sites (n > 30); pairwise comparisons that
are significantly different are boldface. The cover class descriptions are given in Table 2.
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cation accuracies using Landsat, SPOT 5, and Quickbird for
leafy spurge infestation detection in southeastern Idaho. An
inverse relationship exists between spatial resolution and over-
all classification accuracy for leafy spurge detection.

Training sites must be accurately located relative to the
imagery. In other words, the field training site must be placed
inside the correct pixel. The first step toward that end is to
acquire terrain-corrected imagery from the vendor whenever
possible (it is noted that this is typically the most expensive
package from vendors). Doing this does not preclude the need to
collect good control points and further rectify the imagery.
Rather, it makes the georectification process easier because the
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0 [ 1 I ]
Mean Mean Mean Mean Mean Mean Mean Mean
overall Kappa overall Kappa overall Kappa overall Kappa
accuracy accuracy accuracy accuracy
Landsat SPOTS Quickbird (1) Quickbird (2)
Classificati by

Figure 1. Mean overall accuracy and kappa analysis results for clas-
sification of leafy spurge derived from various satellite platforms. Kappa
>0.35 is significant (maximum likelihood, minimum distance to means,
and spectral angle mapper classification techniques were used). Quick-
bird (1), satellite imagery acquired in early summer. Quickbird (2),
satellite imagery acquired in late summer.
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imagery is “closer” to its correct location than if it were not
terrain-corrected.

An inter-related consideration is the spatial resolution re-
quired to address specific problems. In the case study presented
above, detection of patchy invasive plant infestations required
the use of high spatial resolution imagery (pixel size of < § m)
to achieve 75% overall classification accuracy. In this case, we
observed an inverse relationship between accuracy and spatial
resolution. Other rangeland applications may not follow this
trend. In fact, there are many applications for which Landsat or
Moderate Resolution Imaging Spectroradiometer imagery is
perfectly well suited (Reeves et al. 2001).

SPOT 5 satellite imagery was able to achieve reasonable
accuracy (Fig. 1) at a much reduced cost (Table 6). For this
reason, SPOT imagery is very attractive and it may be the most
cost-effective imagery for the detection of leafy spurge. The cost
per square kilometer is higher than that of Landsat but
substantially lower than that of Quickbird. The overall accuracy
(51%) of SPOT imagery for detection of leafy spurge was below
the given accuracy requirements; but the 75% overall accuracy
requirement was arbitrary. It is important to note, however, that
because of a fairly low mean kappa value, additional research
will be required before a firm conclusion can be made regarding
applicability of SPOT imagery for rangeland classification.

In addition to these considerations, the user should also
consider temporal aspects of image acquisition, specifically as it
relates to the phenology of targeted plant species (Everitt et al.
1995). Figure 1 illustrates the variation in overall accuracy
when using imagery acquired in early summer (78%) versus
late summer (67%). The phenology of leafy spurge has bright,
conspicuous flowers in the early summer, which increases its
separability from nontarget features and helps explain im-
proved detection accuracy during this time period.

Rectification and Registration

The Trimble ProXR GPS receiver consistently (95% CI)
achieved submeter horizontal positional accuracy (* 0.78 m)
when a clear view of the sky was available (Bays 2003) and
differential correction was used. Likewise, the Trimble GeoXT
also achieved submeter horizontal positional accuracy (95%
CI = *= 0.96 m). In contrast, the Trimble GeoExplorer II GPS
receiver achieved horizontal positional accuracy of only 95%
CI = + 3.25 m, which failed to consistently achieve the
required accuracy for the Quickbird imagery (= 1.2 m) even
when differentially corrected.

GPS is quickly becoming the most needed yet most misused
technology available. This is perhaps because many users
are already familiar with recreational-grade GPS receivers. The
result is that these users approach GPS research applica-
tions with basic familiarity but without a full appreciation
of the differences in receiver-specific accuracy and error
propagation. When using high spatial resolution imagery,
the use of resource-grade GPS receivers is necessary to sat-
isfy horizontal positional accuracy requirements (95%
Cl==+12m).

At the core of this problem is the fact that users are not
simply trying to navigate to a point in the field, but rather are
trying to match observations from 2 independent systems (i.e.,
imagery and field). To succeed, both systems must use the same
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Table 6. Comparison of spatial resolution and cost of various satellite
platforms.

Minimum
Spatial resolution scene size Cost per  Cost Cost for
(meters per pixel)  (km?) scene  per km? 32 400 km?
Landsat TM 30 32 400 $650 $0.02 $650
SPOT 5 10 3600" $3 259 $1.10 $35 640
Quickbird 2.4 64  $1920 $30.00 $972 000

"Minimum scene size requirements have changed since this case study was completed. For
details see http://www.terraimageusa.com.

datum and projection. The native coordinate system for the
GPS is latitude-longitude with World Geodetic System 1984
(WGS84) used as its horizontal datum. Any datum trans-
formations or projections (i.e., converting geographic to
universal transverse mercator), or both, can be handled with
receiver-specific software. Ordering imagery in a specific co-
ordinate system is usually acceptable.

MANAGEMENT IMPLICATIONS

As a result of experiences in the field, a set of best practices has
been assembled to guide rangeland scientists in their efforts to
integrate geospatial technologies into their profession.

1) Design and collect field observations that match what the
satellite “sees.”

2) Develop a problem statement that clearly defines the
questions you want the geotechnologies to address. As
part of this statement, decide upon an acceptable level of
error.

3) Understand that cost-effectiveness means the least expen-
sive sensor that satisfies the accuracy requirements.
Choosing a sensor that is the least expensive can result
in 100% waste of financial resources.

4) Invest in high-quality GPS receivers, particularly when
using high spatial resolution imagery.

5) If real-time differential correction (producing acceptable
horizontal positional accuracy [e.g., = 1.2 m]) is not
available, use postprocess differential correction for all
GPS acquisitions from nearby base stations.

6) Collect all GPS points using native latitude-longitude and
the WGS84 datum. Conversion can be made at a later
time using receiver-specific software.

7) Establish as accurate a location as possible while in the
field. To do this:

a. Collect a sufficient number of positions per point to
account for instantaneous environmental errors (typi-
cally 120 positions per point) and ephemeris errors
arising from differences between the anticipated loca-
tion of a satellite and its true location.

b. Use signals from 4 or more GPS satellites available to
the receiver (3-dimensional mode). A 12-channel re-
ceiver will provide higher location precision than a
6-channel receiver.

c. Establish and follow PDOP and elevation mask pro-
tocols.
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8) Collect ground control points in the field using clearly
identifiable points on the imagery, or map, or both. For
applications using high spatial resolution imagery, re-
flective tarps will need to be staked in the field prior to
image acquisition so that rectification and coregistration
are as accurate as possible.

9) Invest in geotechnical training or geotechnically trained
personnel, or both.
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