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Abstract

Hyperspectral 1-m-resolution remote sensing has the potential to reduce the time spent sampling and reduce spatial sampling
errors found in traditional forage nutritive analysis over large areas. The objective of this study was to investigate if 1-m-
resolution hyperspectral techniques are useful tools to provide reliable estimates of forage nitrogen (N), phosphorus (P) and
neutral detergent fiber (NDF) in Yellowstone National Park. The vegetative communities investigated varied in the amount of
canopy coverage and species diversity, and ranged from xeric, semiarid environments to mesic, wetland/riparian environments.
A large number of simple ratio-type vegetation indices (SRTVI) and normalized difference-type vegetation indices (NDTVI)
were developed with the hyperspectral dataset. These indices were regressed against N, P, and NDF values from ground
collections. We found that 1) there were strong linear relationships between selected SRTVI and N (R2 ¼ 0.7), P (R2 ¼ 0.65),
and NDF (R2 ¼ 0.87) nutritive values on an area basis (g �m�2); and 2) there were no strong linear relationships (R2 , 0.3)
between a variety of SRTVI and NDTVI and N, P, and NDF on a dry matter basis (g � g�1 3 100). The lack of relationship is
related to 1) the highly variable relationship between the dry matter biochemical signal and total plant biomass and water
content and 2) the weakening of the biochemical signal from exposed soil in low-canopy situations, from nonphotosynthetic
vegetation (bark, stems, and litter), and from different plant species.

Resumen

Los sensores remotos de tipo hiperespectral de 1 m2 de resolución tienen el potencial de reducir el tiempo de muestreo y los
errores espaciales de muestreo encontrados en los análisis tradicionales de calidad del forraje en grandes áreas. El objetivo de
este estudio fue investigar si las técnicas hiperespectrales de 1 m2 de resolución son herramientas útiles para proveer
estimaciones confiables del nitrógeno (N), fósforo (P) y fibra neutro detergente (NDF) del forraje en el Parque Nacional de
Yellowstone. Las comunidades vegetales estudiadas variaron en la cantidad de cobertura de copa y diversidad de especies y
estuvieron en un rango de ambientes xéricos semiáridos a ambientes mésico de humedales y ribereños. Con el juego de datos de
los sensores hiperespectrales se desarrolló un gran número de ı́ndices del tipo de relación simple (SRTVI) e ı́ndices del tipo de
Diferencia Normalizada de Vegetación (NDTVI) que se sometieron a análisis de regresión contra valores de N, P, y NDF
obtenidos de de colecciones en el terreno. Encontramos que: 1) hay relaciones lineales fuertes entre SRTVI y N (R2 ¼ 0.7),
P (R2 ¼ 0.65), y NDF (R2 ¼ 0.87), (valores estimados en g �m�2). 2) No hubo relaciones lineales fuertes (R2 , 0.3) entre el N,
P y NDF, en base a materia seca (g � g�1 3 100), y una variedad de ı́ndices de SRTVI y NDTVI. La falta de la relación se esta
relacionada con: 1) una relación altamente variable entre la señal bioquı́mica de la materia seca y la biomasa total y contenido
de agua de la planta y 2) a la debilidad de la señal bioquı́mica del suelo expuesto en situaciones de baja cobertura de copa,
vegetación no fotosintética (corteza, tallos y mantillo) y las diferentes especies de plantas.
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INTRODUCTION

Measuring nutritional characteristics of range forage is an
essential component of the effective management of rangelands.
Nutritional characteristics of range forage are used in range
animal nutrition assessments and are prominent in the control
of plant growth and decomposition, thus influencing carbon,
nitrogen (N), and phosphorus (P) cycling. N, P, and neutral
detergent fiber (NDF) are all determinates of forage nutritive
value. Typically the estimation of these nutritional values
requires that forage be collected in the field and then sent for
laboratory analyses where chemical digestion or laboratory
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near-infrared spectroscopy (NIRS) methods are used (Peterson
et al. 1988; Wessman et al. 1988; Meuret et al. 1993; Lacaze
and Joffre 1994; Gillon et al. 1999). The use of these laboratory
techniques to estimate forage nutritional values over large areas
and for different plant communities and sites would require
a large number of samples, which is time-consuming and can
lead to large errors at the landscape level if inadequate
sampling procedures are used. Remote sensing has the potential
to reduce the errors and time needed for traditional forage
nutritive analysis by accurately estimating forage nutritive
values over a large area almost instantly.

High spectral resolution (hyperspectral) remote sensing has
been used with some success to estimate N and lignin contents
and other biochemical properties in densely vegetated contin-
uous green canopies of forests and agricultural crops (Wessman
et al. 1989; Gamon et al. 1993; Johnson et al. 1994; Kumar
et al. 2001; Boegh et al. 2002; Smith et al. 2002). Hyperspectral
devices, which split the spectrum into fine divisions (narrow
bands) similar to those produced by NIRS instruments used in
laboratories, have been found to be more reliable estimators of
plant biochemical properties than are multispectral devices,
which split the spectrum into much wider divisions (broad
bands). In several studies of semiarid rangelands, characterized
by low vegetation cover and arid adapted vegetation with
a wide mixture of green and dead biomass, hyperspectral
devices have not been very successful in estimating N, lignin,
or other biochemical properties of the vegetation (Asner 1998;
Asner et al. 1998; Blackburn and Steele 1999; Asner et al.
2000). Using hyperspectral data, Serrano et al. (2002) reported
poor estimates of N and lignin on a percent composition of
vegetation basis (g � g�1 forage), but estimates on an areal basis
(g �m�2) were more reliable. From that study an index was
proposed to estimate N; this Normalized Difference Nitrogen
Index (NDNI) is based on the analysis of various semiarid plant
communities in the Santa Monica Mountain area of southern

California. The index uses reflectance from a narrow band at
1510 nm, which is related to an N absorption area, and another
narrow band (1680 nm), which acts as a reference band for the
previous one. In addition, a variety of indices similar to the
Normalized Difference Vegetation Index (NDVI) continue to be
used and newer ones are constantly being developed for
biochemical estimations.

Previous studies designed to estimate the nutrient value of
forages have mostly used remote sensing at low spatial resolution
(. 20m). That meant that in order to match the ground sampling
with the remote sensing data, extensive subsampling within the
ground sample site was often necessary, which unfortunately
introduces additional measurement errors (Curran and William-
son 1986; Dungan 1998). With high spatial resolution remote
sensing (1 m), the associated errors are avoided because the total
forage within the ground sample site can be collected and
analyzed for nutritive values. Another advantage of high spatial
resolution remote sensing is that the problem of pixel mixing,
which is the mixing of reflectance from different objects such as
soil, different species, and varying cover levels, can be reduced.
With reduced pixel mixing the signal from the object of interest,
it is less likely to be confused with signals from other objects.

The overall objective of this study was to investigate if 1-m-
resolution hyperspectral remote sensing techniques are useful
tools to provide reliable estimates of forage N, P, and NDF in
Yellowstone National Park. The vegetation studied had large
variations in canopy coverage and species diversity, and ranged
from xeric, semiarid-adapted plants to plants from mesic,
wetland/riparian environments. The specific objective was to
develop linear relationships between forage nutritive values and
simple ratio-type vegetation indices (SRTVI) and normalized
difference-type vegetation indices (NDTVI) created using the
bands available from the hyperspectral remote sensing dataset.
In addition, NDNI, the proposed index for estimating N
developed by Seranno et al. (2002), was investigated to
ascertain its performance.

MATERIALS AND METHODS

Study Site
The study was conducted on the northern winter range of
Yellowstone National Park. The northern winter range has been
described in detail by Houston (1982). Yellowstone National
Park covers about 899 500 ha between lat 448089N and
458079N, and long 1118109W and 1108W in the northwestern
corner of Wyoming. The northern winter range contains the
Yellowstone, Gardner, and Lamar river valleys. Elevations range
from approximately 1 500 to over 3 000 m in the northern
winter range of the park. Soils are derived from glacial debris of
andesitic rock, limestone, and other rocks of sedimentary origin.
Deep loams are common on the valley bottoms while thinner,
rocky loams are prevalent on ridge tops. Soils have a higher
water-holding capacity and nutrient level in the northern range
than do those of the other parts of the park. The study site was
located on part of the northern winter range at the confluence of
the Lamar River and Soda Butte Creek (Fig. 1), approximately
30 km southwest of Cooke City, Montana.

The climatic conditions of the study site are characterized by
long, cold winters with substantial amounts of snow and short,

Figure 1. Map of the study site, location of the ground plots, and
hyperspectral image footprint in the northeast corner of Yellowstone
National Park, Wyoming.
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cool summers. Snowfall typically accumulates to depths of 15–
45 cm at the lower sites and 60–80 cm at the higher elevations.
Climatic patterns vary considerably within the park. Average
daily temperatures range from �0.38C in January to 18.38C in
July. Mean monthly precipitation is highest in the spring and
early summer in the northern part of the park. Mean annual
precipitation ranges from 30 cm per year at the park’s lowest
elevations, to 55 cm at the intermediate elevations in the Lamar
Valley, to approximately 100 cm at the highest elevations.

The vegetation of the study region is a mix of steppe, shrub-
steppe, forest, and riparian areas. The classification of vegeta-
tion used in the present study was developed by Despain
(1991). Coniferous forest dominated by Douglas-fir (Pseudot-
suga menziesii [Mirbel] Franco), Engelmann spruce (Picea
engelmanni Parry ex Engelm.), subalpine fir (Abies lasiocarpa
[Hook.] Nutt.) and lodgepole pine (Pinus contorta Dougl. ex
Loud.) occupies approximately 41% of the northern winter
range. Grassland or sagebrush/bunchgrass communities occur
on 55% of the northern winter range of the park. Only about
4% of the northern winter range is classified as riparian area.

Xeric grasslands occupy the poorly developed, droughty
soils on a variety of exposures and slopes below 1 829 m
elevation, and moderate to steep south slopes at elevations up
to 2 438 m. Plant biomass is low in such areas. Bluebunch
wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve ssp.
spicata) dominates the vegetation at low and intermediate ele-
vations, and Idaho fescue (Festuca idahoensis Elmer) domi-
nates at higher elevations.

Mesic grasslands occur on the north slopes at low elevations
and on level to steep slopes at intermediate elevations with
a north or east aspect. Soils are fine-grained with a high
moisture-holding capacity. Plant biomass is high in this mesic
region. Vegetation is dominated by Idaho fescue, bluegrasses
(Poa spp.), needle grasses (Stipa spp.), and basin wild rye
(Leymus cinereus [Scribn. & Merr.] A. Löve).

Sagebrush occurs at low to intermediate elevations. Moun-
tain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana
[Rydb.] Beetle) dominates the overstory. The understory is
dominated by bluebunch wheatgrass, Idaho fescue, needle
grasses, bluegrasses, and basin wild rye.

Sedge (Carix spp.) meadows occur in the areas where the
water table is close to the surface. Plant cover and standing
biomass levels are high. Sedges and some grasses dominate the
area along with small patches of shrubby cinquefoil (Dasiphora
floribunda [Pursh] Kartesz, comb. nov. ined.).

Willow (Salix spp.) communities are found at the hydric
sites, swales, seeps, draws, and streamsides. About 0.4% of
the northern winter range is occupied by willows, usually as
willow/sedge communities.

Ground Data Collection
The objective of the research was to establish how well
hyperspectral imagery would estimate forage nutritive value
over a wide range of nutritive and biomass values within differ-
ing plant communities. Consequently, ground data sites were
selected to represent a large range in nutritive and biomass
values from a variety of plant communities. Plant communities
sampled were xeric, mesic, sagebrush, sedge, and willow.
Because of the large range in values needed to establish rela-

tionships between ground and hyperspectral data, data collec-
tion was systematic rather than on a random basis. Randomly
collected samples covering the same ranges would have re-
quired a time and personnel commitment not available to
this study.

To deal with the problem of coregistering ground data
sample locations and pixel locations in the 1-m-resolution
hyperspectral imagery, the ground data locations were mapped
directly to the imagery as is commonly done in air photos.
Aspinall et al. (2002) found that this method was superior to
using a georeferenced image because georeferencing produced
errors of 6 2 m. Using the imagery as one would use an air
photo, easily identifiable landmarks such as the scattered
individual trees were exactly matched to a pixel in the image.
The ground data sites were then located close to those identified
landmarks. The distance and angle of the ground data sites to
the landmarks were measured on the ground. Using the
distance and angle measurements, a pixel in the image was
identified that corresponded to the ground data site. This
method, as found by Aspinall et al. (2002), produced matches
between the pixel and the ground data site that were off by less
than 1 m. Locations of ground data sites were far enough away
from large objects to avoid the shadowing effects on the sites.

The ground data were collected from 52 1-m2 quadrats from
7 August 1999 to 12 August 1999, 5 to 10 days after the
hyperspectral image was taken. A plot size of 1 m 3 1 m was
selected for ground data collection in order to match the size of
the ground plots with the spatial resolution of the hyperspectral
imagery. Because of the match between the ground data
collection size (1 m2) and the pixel resolution (1 m2) there
was no need to subsample within the ground plots. Within the
plots grasses, sedges, and forbs were clipped to the ground level
and sagebrush and willow leaves (nonwoody portions) were
stripped. Vegetation samples were weighed after oven drying at
608C for at least 48 hours. The total biomass from each 1-m2

plot was ground collectively and random duplicate subsam-
ples were submitted for nutritive analysis. N, P, and NDF
analyses were carried out at the North Dakota State Uni-
versity Nutrition Laboratory in the Department of Animal and
Range Sciences. N and P were analyzed using Association of
Official Analytical Chemists (1990) methods, and the method
of Goering and Soest (1970) was used to analyze the
NDF portion.

Spectral Data Collection
The remote sensing data was collected using the PROBE-1
hyperspectral imagery of Earth Search Science, Inc. of McCall,
Idaho. Hyperspectral imagery data were collected on 2 August
1999 at a spatial resolution of 1 m from an A-Star Aerospatiale
helicopter flying approximately 600 m above the ground.
Geometric correction of the imagery was done with an onboard
global positioning system/inertial navigation system, C-MI-
GITS-II, and a ray-tracing technique (Aspinall et al. 2002).
The PROBE-1 is a whisk-broom-style instrument that gathers
information in a cross-track direction by mechanical scan-
ning and in an along-track direction by movement of the air-
borne platform. The PROBE-1 remote sensing detector
collected information about the earth’s surface in the visible
(423–700 nm) near-infrared (NIR, 700–1 500 nm), and into the
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short-wavelength infrared (1 500–2 507 nm) portions of the
electromagnetic spectrum. Bandwidths collected had an aver-
age, minimum, and maximum of 15, 10.7, and 19.8 nm,
respectively. The detector consisted of 4 spectrographs, each of
which had 32 bands, for a total of 128 bands. There was about
a 24-nm gap between the second and third spectrographs, and
about a 161-nm gap between the third and fourth spectro-
graphs. The radiometric resolution was 11-bit. The sensor had
a signal-to-noise ratio of around 1 500:1 for the visible and
NIR wavelengths and 800:1 for the short-wavelength infrared.

The hyperspectral data were not atmospherically corrected
because the flight occurred at such low altitude that atmospheric
distortions were minimized (Aspinall et al. 2002). Furthermore,
because of the small extent of the image, atmospheric problems
were not different across the image and thus whatever atmo-
spheric distortion might have occurred was similar across pixels.

Statistical Analyses
All the imagery analyses were conducted using the Environment
for Visualizing Images (ENVI 2000) software package (Re-
search System, Inc., Boulder, CO). A large number of simple
SRTVI and NDTVI were calculated as follows: SRTVI ¼ Band
1/Band 2; NDTVI ¼ (Band 1 � Band 2)/(Band 1 þ Band 2),
where Band 1 and Band 2 are the reflectance values (in this case
the digital number) from the imagery. To calculate the large
number of SRTVI and NDTVI, the reflectance from selected
regions or bands of the electromagnetic spectrum were succes-
sively used in the equations creating the SRTVI and NDTVI
values. The number and width of the bands available were
established by the PROBE-1 detectors. For Band 1 all the
available bands between 707.5 and 2 506.7 nm of the spectrum
were used for a total of 107 separate bands. For Band 2 all

available bands between 437.9 and 2 506.7 nm were used for
a total of 127 separate bands. The wavelength values reported
represent the midpoint of each band. Indices and ground data
sites were matched and analyzed in SAS (1999) (SAS Institute,
Inc., Cary, North Carolina) using the PROC REG regression
analysis procedure set to the MAXR model-selection method.
The MAXR model-selection method identifies the best 1-
variable model, with the highest R2 (SAS, 1999), between the
N, P, and NDF values on a percent dry matter basis (%DM:
g � g�1 3 100), or on an area basis, (g �m�2), for the various
SRTVI or NDTVI. The SRTVI or NDTVI were set as the
independent variable and the nutritive values were set as the
dependent variable. NDNI was calculated using information
from 1 510 nm and 1 680 nm of the hyperspectral dataset for
Band 1 and Band 2 respectively: NDNI ¼ (Band 2 � Band 1)/
(Band 1 þ Band 2).

RESULTS

The best linear relationships (higher R2) between NDF (Fig. 2),
N (Fig. 3), and P (Fig. 4), on an area basis (g �m�2) and
hyperspectral measurements, were found with a particular
subset of SRTVI. Many other SRTVI and NDTVI, not reported,
also generated significant linear relationships (P , 0.01), but
lower R2. The relationship between gN �m�2 and NDNI, the N
index proposed by Serrano et al. (2002), was also statistically
significant but with a lower R2 (0.7 for the SRTVI vs. 0.6 for
the NDNI) (Fig. 5). None of the relationships between N, P,
and NDF on a %DM basis (g � g�1 3 100) and the various
SRTVI, NDTVI, and NDNI were found to be statistically
significant (P . 0.1; R2 , 0.3).

Figure 2. Regression between total vegetation neutral detergent fiber
(NDF) and a selected simple ratio-type vegetation index (SRTVI). SEP
indicates standard error of prediction; CV, coefficient of variation; and
N, number of observations.

Figure 3. Regression between N and a selected simple ratio-type
vegetation index (SRTVI). SEP indicates standard error of prediction;
CV, coefficient of variation; and N, number of observations.
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The best relationship between an SRTVI and N (gN �m�2)
was found when using reflectance from 890 nm for Band 1
(NIR portion), and 437 nm for Band 2 (the blue portion and
a chlorophyll absorption area) (Fig. 3). These parts of the
spectrum have not been previously identified as being related to
N absorption in vegetation (Curran 1989; Fourty et al. 1996;
Blackburn and Steele 1999). The NDNI index we tested used
information from the short-wave infrared portion of the
spectrum (1 510 nm), previously identified as being an N
absorption area for Band 1, and a reference area in the short-
wave infrared portion of the spectrum (1 680 nm) for Band 2.
The best correlations between NDF (g �m�2) and SRTVI used
reflectance from 1 301 nm for Band 1 (the short-wave infrared
portion of the spectrum) and 623 nm for Band 2 (the red
portion and a chlorophyll absorption area). Finally, P (gP �m�2)
was best predicted using an SRTVI ratio of 1 129 nm for Band
1 (the NIR portion of the spectrum), and 462 nm for Band 2
(the blue portion and a chlorophyll absorption area). Other
unreported significant linear relationships between N, NDF,
and P (in g �m�2) and either SRTVI or NDTVI involved using
reflectance for Band 1 taken from the NIR portion of the
spectrum and certain portions of the short-wave infrared;
reflectance for Band 2 was taken mostly from the visible range
of the spectrum.

DISCUSSION

The strength of the relationships we found between N, P, and
NDF and various vegetation indices was highly dependent on
how the nutrient content was expressed. We found strong linear
relationships when nutrients were expressed on area basis

(g �m�2) but no relationship when they were expressed on
%DM basis (g � g�1 3 100). Other studies conducted in similar
semiarid rangeland-type situations also found strong relation-
ships between N or other biochemical constituents and various
vegetation indices on an area basis but none on a %DM basis
(Asner 1998; Asner et al. 1998; Blackburn and Steele 1999;
Asner et al. 2000; Serrano et al. 2002).

Studies that have found significant relationships between
vegetative N on a %DM basis and remote sensing have been
mostly conducted in forest systems (Johnson et al. 1994;
Wessman et al. 1988; Smith et al. 2002). A possible difference
between this study and those done in forest systems is that in
forests there is often a positive correlation between biomass and
%DM N (Johnson et al. 1994; Smith et al. 2002); in this study
no such correlation was found. Leaf optical modeling has
shown that the simulated absorption of wavelengths for
different biochemical constituents such as N was weak in
comparison to water or biomass (Fourty et al. 1996; Asner
1998). Any correlation of the dominant signal from water or
biomass with the biochemical constituent would cause the
signal for the biochemical constituent to be strengthened. In
the forest situation, where there is a positive relationship
between %DM N and biomass, the signal from biomass can
contribute to the relationship, but in this study the reflectance
signal from biomass did not contribute to the relationship.

Another factor contributing to the lack of relationships
between nutrients on a %DM basis and various vegetation
indices is that Leaf Area Index (LAI) controls to a large extent the
reflectance of biochemically important wavelengths (Asner
1998; Blackburn and Steele 1999). With higher LAI there are
more leaves and vegetation structure, which act to enhance the
biochemical signal via multiple scattering. In forest systems with
consistently high LAI levels the ability to detect the weak
biochemical signal increases, but in semiarid rangeland situa-
tions with highly variable LAI the weak biochemical signal may
not be consistent over the area and thus not easily detected.
Therefore, we speculate that the high variability in the relation-

Figure 4. Regression between P and a selected simple ratio-type
vegetation index (SRTVI). SEP indicates standard error of prediction;
CV, coefficient of variation; and N, number of observations.

Figure 5. Regression between N and the normalized difference nitrogen
index (NDNI). SEP indicates standard error of prediction; CV, coefficient
of variation; and N, number of observations.
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ship between biomass and LAI that was typical of our study
effectively confounded the biochemical signal.

Other conditions in this study that could have contributed to
the lack of relationship between the various vegetation indices
and N, NDF, and P on a %DM basis include the following: 1)
the reflectance of soil biochemical properties when there is low
canopy coverage, which was in fact found in many of the
ground plots (Asner 1998; Blackburn and Steele 1999; Serrano
et al. 2002); 2) the reflectance of biochemical properties of
other nonphotosynthetic vegetation such as bark and stems in
the willow and sagebrush communities; and 3) reflectance dif-
ferences between plant species as reported by various studies
(Asner 1998; Blackburn and Steele 1999; Serrano et al. 2002).

In this study the NDNI, which was designed to use known N
absorption areas in the short-wave infrared (SWIR) part of the
spectrum, had a weaker relationship with N than did SRTVI
(Figs. 3 and 5). A possible reason is that the SVTVI used a NIR
part of the spectrum, which has been shown to be less influenced
than the SWIR one by LAI differences, and thus more reliable
when it comes to biochemical properties (Asner 1998).

The areas of the spectrum we used in the best fitting SRTVI
for P and NDF had not been previously identified as being
directly associated with the biochemical properties. As has been
often reported by others, the portions of the spectra previously
associated with certain biochemical absorption under labora-
tory conditions are not always the areas that provide the
strongest associations when remote sensing is used (Blackburn
and Steele 1999). Even when using NIRS under carefully
controlled conditions, the mixture of fresh material with dry
complicates the creation of predictive models because areas not
previously associated with the biochemical constituent need to
be added to make the models work (Grossman et al. 1996).
Such model variability that results from the introduction of
fresh material, or in this case the variability resulting from the
nature of semiarid rangeland, raises the point of whether
analyses should use only areas of the spectrum theoretically
and previously identified to be associated with the biochemical
process or be more empirically driven. In the case of N, our
study looked at indices based on both theoretically and
previously identified areas (NDNI) and empirically derived
indices (SRTVI and NDTVI). Both had significant relationships
with N, with the empirical indices having stronger relation-
ships. The performance of the theoretical NDNI in relation to
its R2 and coefficient of variation would suggest that it did
provide a useful estimate in this study. Given that the NDNI
performed sufficiently well in both this and another study of
chaparral vegetation, there may be some general applicability
for use in semiarid rangeland situations. The empirically
derived indices may always be data dependent and thus have
no general applicability, but their stronger relationships may
prove beneficial depending on the situation.

The techniques used in this study reduced measurement and
device errors as a result of the following procedures: 1) the
avoidance of subsampling and the total harvest of the 1-m2

ground plot, which lead to a fairly large sample size when
compared with similar studies; 2) the low signal-to-noise ratio
of the hyperspectral device; 3) the low flight elevation and the
reduction in errors resulting from atmospheric distortions; and
4) the reduction at the 1-m resolution of the phenomenon of
pixel mixing that results from reflectance of various species and

plant communities along with exposed soil. Such a reduction in
errors suggests that the results of this study were mostly related
to reflectance variability and not driven by measurement or
device error.

Future investigations should continue the search to improve
the estimations of biochemical properties of vegetation via
hyperspectral reflectance, in particular on a %DM basis, using
newer techniques. Application of newer NIRS techniques, such
as derivative transformations and use of partial least squares or
other sophisticated analysis techniques, may provide better
predictability between remote sensing and biochemical proper-
ties of vegetation, taking always into consideration the large
differences between the controlled conditions used in NIRS and
the conditions experienced in semiarid rangeland situations.
Because of the influence of varying LAI or biomass on
reflectance properties, stratified sampling and analyses based
on LAI and biomass ranges should increase the predictability of
the relationships. Within that stratification, a further stratifi-
cation using plant communities or dominant species could also
be applied to further reduce the effect from species. This
scenario would require the classification of biomass and plant
communities or species into appropriate categories, something
that is possible with current remote sensing techniques.

MANAGEMENT IMPLICATIONS

The relationships found between the 1-m-resolution hyper-
spectral remote sensing dataset in Yellowstone National Park
and forage nutritive values from xeric, mesic, sagebrush, sedge,
and willow rangeland plant communities resulted in these
conclusions and implications for management:

1) Strong linear relationships were found between N, NDF,
and P nutritive values on an area basis (g �m�2) and
selected SRTVI. Once applied to the imagery, these
relationships will produce a map of nutritive values that
can be used in studies of animal nutrition and ecological
processes, and evaluations of the effects of natural and
man-made disturbances.

2) We found that a vegetation index, NDNI, which is based
on previously identified N absorption areas of the spec-
trum, provided a useful estimate of N (gN �m�2). The
empirically derived SRTVI did outperform the NDNI and
resulted in lower errors and better predictability, but their
applicability beyond this study is unknown. With the
NDNI providing useful estimates in 2 different studies
and in differing plant communities there is now the pos-
sibility that NDNI has some general application in semi-
arid rangeland situations. It is suggested that researchers
and managers who require maps of N (gN �m�2) use
imagery capable of calculating NDNI.

3) We did not find any statistically significant relationships
between N, NDF, and P forage nutritive values on a %DM
basis (g � g�1 3 100) and NDNI or a variety of SRTVI and
NDTVI. Reasons for the lack of relationships are related to
a) the highly variable relationship between the dry matter
biochemical signal and total plant biomass, water content,
and LAI and b) the weakening of the biochemical signal
from exposed soil in low canopy cover situations, from
nonphotosynthetic vegetation (bark, stems, and litter), and

58(5) September 2005 457



from different plant species. The advantages of using high
spatial resolution (1 m) hyperspectral imagery in reducing
pixel mixing from differing objects and elimination of
subsampling error from the ground sample site did not
improve our ability to find significant relationships.
Further research, along with the use of newer analytical
techniques, will be needed before this type of imagery can
provide useable estimates of nutritive values on a %DM
basis for rangeland management.
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