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Lorena P. Herrera,1 Vanina Gómez Hermida,2 Gustavo A. Martı́nez,3

Pedro Laterra,4 and Néstor Maceira5
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Abstract

The knowledge of the distribution, area, and current conservation status of relict natural grasslands dominated by the tall-
tussock grass Paspalum quadrifarium Lam. (‘‘pajonal’’) in the Flooding Pampa (Argentina) is relevant for the identification of
conservation sites and sustainable management and land-use planning. Since European settlement, vast areas of pajonal were
converted to croplands and short-grass prairies. The only available vegetation map of these grasslands was made in the mid-20th
century. We evaluated 2 methods of land-cover classification (supervised and unsupervised) using a Landsat TM satellite image
over an area of 2 258.21 km2 in Ayacucho county, where pajonal still persists as an important ecosystem. At the paddock scale,
this grassland community presents a complex structure in which the pajonal is not a pure category but a mosaic of tall and short
grasses. Six categories of land cover were adopted (crops, sown pastures, short grasses, pajonal, wetlands, and urban areas). A
very good overall accuracy was obtained for both classifications (86.9% and 87.9% for supervised and unsupervised
classifications, respectively). However, both producer’s and user’s accuracies for the pajonal and short grasses were better for the
unsupervised classification than for the supervised classification. The pajonal class occupied only 20% of the study area with
patch size ranging between 0.09 and 1 653 ha. This work suggests an important replacement of tall-tussock grass by short-grass
matrix, which represents noticeable structural and functional changes. The unsupervised classification of Landsat image seems
a particularly suitable method for mapping complex vegetation units like the highly fragmented pajonal of the Flooding Pampa
and should be an important tool for management and tracking future changes.

Resumen

Conocer la distribución espacial, extensión y estado de conservación actual de pastizales en estado original dominados por
‘‘Tall-tussock grass’’ (Paspalum quadrifarium Lam.) (‘‘pajonal’’) en la Pampa Inundable (Argentina), es relevante para identificar
áreas de conservación y planear el manejo sustentable del uso de la tierra de la región. A partir del asentamiento europeo,
grandes áreas de ‘‘pajonal’’ fueron convertidas a tierras de cultivos y praderas de pastos cortos. El único mapa de vegetación
disponible de la región fue realizado a mediados del siglo 20. En este trabajo, evaluamos 2 métodos de clasificación del uso de la
tierra (clasificación supervisada y clasificación no supervisada) para identificar al ‘‘pajonal’’. Se trabajó con una imagen Landsat
TM, correspondiente a un área de 2 258.21 km2 en el Partido de Ayacucho, donde todavı́a persiste el ‘‘pajonal’’ como un
importante ecosistema. A la escala del potrero, esta comunidad presenta una estructura compleja, donde el ‘‘pajonal’’ no se
presenta como una categorı́a pura sino como un mosaico de pastos altos y pastos cortos. Seis categorı́as de cobertura de la tierra
fueron adoptadas para las clasificaciones (cultivos, pastos cultivadas, pastos cortos, pajonal, cuerpos de agua, y áreas urbanas).
Se obtuvieron grados de certeza global muy buenos para ambas clasificaciones (86.9% y 87.9% para clasificación supervisada y
no supervisada, respectivamente). Sin embargo, tanto la certeza del productor como la del usuario para las clases ‘‘pajonal’’ y
pastos cortos fueron mejor para la clasificación no supervisada. La clase ‘‘pajonal’’ ocupó solamente el 20% del área de estudio
presentando tamaños promedios de parches de 0.09 y 1 653 ha. Este trabajo sugiere un importante reemplazo del ‘‘tall tussock
grass’’ por el pastizal corto, lo cual representa destacados cambios funcionales y estructurales. La clasificación no supervisada
a partir de la imagen Landsat resulta un método particularmente adecuado para el mapeo de unidades de vegetación complejas
como el ‘‘pajonal’’ de la Pampa Inundable y deberı́a ser una importante herramienta para el manejo y monitoreo de cambios
futuros en el uso de la tierra de la región.
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INTRODUCTION

Paspalum quadrifarium Lam. (paja colorada) is a South Amer-
ican C-4 tussock grass, which extends between 308 and 398 S
Lat, forming dense and tall-tussock grasslands, locally known
as ‘‘pajonal of paja colorada’’ (hereafter, pajonal) (Vervoorst
1967; Quarin and Lombardo 1986). Significant transformation
and loss of this and other types of pristine vegetation has
occurred since European settlement, mainly as a result of
human activity. In the Pampa region of Argentina, pajonal
grasslands probably dominated the original vegetation over
vast areas before agricultural soils were turned into cropland
(Laterra et al. 1998, 2003). Approximately 50 years ago, the

pajonal was described as the dominant plant community over
a wide fringe of 14 000 km2, extending from NW to SE in the
middle-south of the Flooding Pampa subregion (‘‘Paspaletum’’
sensu Vervoorst 1967, Fig. 1). Today, natural and seminatural
grasslands primarily exist in areas of the Pampa that are
periodically flooded (Soriano 1991).

Current management of the pajonal remnants is based on
periodic or occasional burnings that induce short-term en-
hancement in quality, accessibility, and productivity and on
transitional floristic stages, characterized by different types of
forage (Laterra 1997; Juan et al. 2000) and weed species
(Cauhépé 1990; Laterra et al. 1998, 2003). Other disturbances,
such as plowing or herbicide application, are being used to
reduce the pajonal remnants and replace them with short
grasses or annual crops. Although some of the transitional
stages mentioned above are reversible, the short grassland does
not seem to be returning (Laterra et al. 1998). Therefore, the
extent of the pajonal has diminished during the past decades.
The magnitude, rate, and spatial pattern of pajonal reduction
have not been scientifically evaluated. Quantification of pajo-
nal reduction is important because of the role it plays in the
conservation of autochthonous biodiversity (Comparatore et
al. 1996) and the maintenance of critical ecosystem processes
(Perelman et al. 2003).

Satellite imagery has been useful for analyzing and mapping
vegetation over large areas (Tucker et al. 1985; Tueller 1989).
Digital image classification is an important tool for evaluating
ecosystem function and change over large areas. Image classi-
fication methods can be broadly grouped into 2 major
categories. The first is called supervised classification (SC),
which requires considerable knowledge of the area to identify
areas known to belong to different categories. Statistics de-
scribing training areas for each category are generated by the
image processing software (mean and standard deviation).
Remaining unknown areas, often are classified into a statisti-
cally unique category (Tueller 1989). The second major
approach to image classification is called unsupervised classi-
fication (USC), where the analysis identifies statistically unique
categories of stuff (based on user provided parameters) and
then assigns remaining image pixels to each category. Catego-
ries developed using this procedure are usually of unknown
composition and can result in a high degree of statistical
overlay (the same stuff differentiated into 2 or more categories
or different stuff that cannot be statistically discriminated).
This intermediate step must be followed by cluster interpreta-
tion, where the user assigns physical attributes (e.g., woodland,
grassland, urban) to each category and reconciles classification
problems. The USC procedure is relatively easy to modify and
can be run under a variety of user-defined parameters until
a satisfactory classification is reached (Tueller 1989).

Both supervised and unsupervised classifications seem to
have considerable potential for the discrimination and man-
agement of grasslands communities (Tueller 1989; Guo et al.
2000). Many authors have pointed out the difficulty in
discriminating grasslands with similar spectral properties (Eg-
bert et al. 1997; Price et al. 1999). However, these limitations
or difficulties can be accounted for and in some cases corrected.
Image classification is imperfect, however, it still provides the
ability to evaluate large areas that would be impossible to
evaluate using any other method (Everitt et al. 1981).

Figure 1. Location of the study area in the Pampa region, Argentina
(grey area). Black area represents the Paspaletum landscape according
to Vervoorst (1967).
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Classification studies of vegetation in the Flooding Pampa
using remote sensing data to discriminate similar vegetation
types are scarce. Guerschman et al. (2003) explored the use of
multitemporal Landsat Thematic Mapper (TM) data for the
classification of land cover types in the southwestern portion of
the Argentina Pampas, including a portion of the Flooding
Pampa. Other researchers have focused on the analysis of
functional heterogeneity (Paruelo et al. 2001) and the estima-
tion of pasture productivity (Chanetón et al. 1995; Paruelo
et al. 1998, 1999) at a regional scale, using the Normalized
Difference Vegetation Index (NDVI) data observed by Ad-
vanced Very High Resolution Radiometer (AVHRR) satellites.
Landsat TM and Enhanced Thematic Mapper (ETM) images
were just recently used for classification studies of vegetation
cover in the West Pampa (Demaria et al. 2004).

This work is the first contribution to the description and
mapping of pajonal grasslands of the Flooding Pampa using
remote sensing data. The main goals were: 1) to assess the
spectral properties of pajonal remnants and replacement
vegetation, 2) to compare the feasibility of supervised and
unsupervised classifications to discriminate the pajonal from
other grassland communities, and 3) to generate a preliminary
vegetation map of a 2 258.21 km2 area in the Ayacucho
county, where pajonal still persists as an important component
of the vegetation. Ecologically, this research will be used to
develop a baseline assessment of the various vegetation
components.

METHODOLOGY

Study Area
The study area was a 2 258.21 km2 area in the Ayacucho
county, Province of Buenos Aires. The area (lat 378059 to
378319S; long 588139 to 588449W), which includes the Flooding
Pampa of Argentina (Soriano 1991), was originally classified as
pajonal by Vervoorst (1967) (Fig. 1). It is a very flat area
covered with Aeolian silt deposits (loess) of the Cenozoic Age
(Frenguelli 1950), with halomorphic and hydromorphic soils
that are periodically affected by floods. Natural or seminatural
grasslands devoted to cattle grazing cover most of this region.
The region is humid and temperate with a mean annual
precipitation of 1 000 mm. The mean annual temperature is
148C with a mean minimum temperature of 6.88C in July and
a mean maximum of temperature of 21.88C in January (Soriano
et al. 1991).

At the paddock scale, the pajonal presents a mosaic structure
of 2 types: tall and dense patchy stands dominated by
P. quadrifarium (TG) and various other community types domi-
nated by short grasses (SG) extensively described by Burkart
et al. (1990), Perelman et al. (2001), and Perelman et al. (2003).
These 2 community types present an important physiognomic
contrast, especially during winter when TG presents a 100 to
150-cm–high canopy composed mainly of standing dead bio-
mass (Laterra et al. 2003), whereas SG canopy (no more than
50–70 cm in height) is composed of diverse plant communities
with both warm- and cold-season species.

TG and SG were found in different proportions throughout
the study area. These areas were subsequently divided (a priori)

into 3 structural categories based on relative cover: open
pajonal (TG occupying up to 25% of the paddock area),
semiopen pajonal (TG occupying 25%–50% of the paddock
area), and dense pajonal (TG occupying more than 50% of
the paddock area).

Satellite Image Information
A Landsat 5 TM satellite image was acquired on 26 August
1998 and used in this study. During this period the TG phase
presents a maximum percent of standing dead tissue, and its
spectral signature can be distinguished from the spectral
signature of other cover types. Previous analysis of the summer
and winter images allowed for the comparison of the spectral
response between TG and SG. The spectral contrast between
the TG and SG community types was maximized during
winter. The TG community type was also more easily separable
from other landscape types. The TM image was geometrically
registered (first-order polynomial) using ground control points
from topographic maps in Erdas Imagine 8.3.1 (Mather 1999).
Well-defined features in the image, such as road intersections,
corners of paddocks, bends in the rivers, roads, and bound-
aries of cities, were chosen as ground control points. The image
base used was the Traverse Mercator Projection (Gauss
Krugger) with an International Ellipsoid (1909). The root
mean square (RMS) error of the registration process was
approximately 1.35 pixels, which was more than adequate
for this type of analysis.

Ground Information
A total of 165 ground points were visited across the region in
1997, 2001, and 2002. These training/verification sites were
located using a global positioning system (GPS) and located
primarily at easy access points (principal routes and internal
roads) within the study area. Logistical and economic consid-
erations did not permit acquiring ground samples randomly
throughout the area. However, the large number of sites visited
and their dispersal throughout the study area should have
minimized any potential sampling biases. Ground sites were
selected within relatively homogeneous landscape units greater
than 1 ha in area. Sites were characterized as crops, sown pas-
tures, short grasses, pajonal, wetlands, and urban areas (Table 1).

The 165 field sites were split up into 2 groups: 58 training
sites (used to optimize classification parameters) and 107
control points (used to assess the accuracy of the final
classification). Training sites represented 22.18% of the image
(500.96 ha). Community types that could not be spectrally
separated using data from the 58 training sites were combined
into a single category when possible. The 107 validation points
occurred in the following classes: 18 crops, 4 sown pasture, 33
short grasses, 35 pajonal, 11 wetland, and 6 urban areas.

With the exception of urban development and cultivation,
change across the area occurs slowly. Therefore, it is reasonable
to assume that ground conditions at the time the sites were
visited (1997, 2001, and 2002) should not have changed
substantially from site conditions existing when the satellite
image was acquired (1998). Furthermore, the primary focus of
this study, quantification of extinction-prone pajonal vegetation
(Laterra et al. 1998), was conducted closest to the image
acquisition date.
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Supervised and Unsupervised Classifications
The SC and USC were performed with Erdas Image 8.3.1 using
the following 6 Landsat bands: TM1, TM2, TM3, TM4, TM5,
and TM7. For SC, the maximum likelihood algorithm was
used, and the spectral signature for each land cover class was
defined by the mean pixel response and standard deviation for
each band within each training area. The USC was accom-
plished using the chain algorithm or ISODATA with 100
clusters, which were then manually combined into the 6 land
use categories already mentioned. Classification results were
subsequently filtered using a 3 3 3 median filter to remove the
‘‘salt and pepper’’ effect of the classification.

Accuracy Assessment
In general, 2 methods were used for the accuracy assessment:
the error matrix and the Kappa coefficient (also called KHAT or
Kappa index of agreement, KIA) (Chuvieco 1990; Congalton
1991). An error matrix is a square array of numbers organized
in rows and columns, which express the number of sampling
units (i.e., pixels, cluster of pixels, or polygons) assigned to
a particular category relative to the actual category. The
columns usually represent the reference data whereas the
rows indicate the classification generated from the remotely
sensed data. Correct classifications will be recorded in the
matrix diagonals whereas incorrect classifications will corre-
spond to off-diagonal positions. The overall accuracy is

calculated by dividing the number of elements (control points)
correctly classified by the total number of control points
included in the evaluation process (Congalton 1991, 2001).
The error matrix also provided errors of commission (errors of
inclusion) and omission (errors of exclusion). The former
occurs when an area is included in a category it does not
belong to, and the latter occurs when an area is excluded from
a category that it does belong to (Congalton 1991).

The Kappa statistic quantifies how well a particular classi-
fication performed with respect to the random assignment of
pixels to each class. This generally results in lower classification
accuracy because the probability that a correct pixel classifica-
tion occurred randomly is removed. All elements in the
classification error matrix (not just the main diagonal),
contribute to its calculation (Cohen 1960 in Congalton
1991). The equation for the Kappa index is:

j ¼ N
Xr

i¼1

xii �
Xr

i¼1

½xiþ 3 xþi�
 !

N2 �
Xr

i¼1

½xiþ 3 xþi�
 !,

½1�

where r is the number of rows in the error matrix, xii is the
number of observations in row i and column i, xiþ are the
marginal totals of row i, xþi are the marginal totals of column i,
and N is the total number of observations. The Kappa
coefficient value ranges from �1 to 1, where the latter indicates
complete agreement. Monserud (1990) suggested the following
scale for Kappa values: 0.05–0.20, very poor agreement; 0.20–
0.40, poor agreement; 0.40–0.55, fair agreement; 0.55–0.70,
good agreement; 0.70–0.85, very good agreement; 0.85–0.99,
excellent agreement; and 0.99–1.00 perfect agreement (values
can also be expressed as percentages).

A variant of the Kappa index (conditional Kappa coefficient
of agreement, ji) (Rosenfield and Fitzpatrick-Lins 1986) was
also employed to calculate a measure of agreement for each
class. The conditional Kappa for user’s class i is calculated as:

ji ¼ ðN 3 xiiÞ � ðxiþ 3 xþiÞ=ðN 3 xiþÞ � ðxiþ 3 xþiÞ ½2�

where ji is the conditional Kappa coefficient of agreement for
the ith category, N is the total number of observations, xii is the
number of correct observations for the ith category, xiþ is
the ith row marginal, and xþi is the ith column marginal.

The accuracies of the SC and USC were assessed using the
107 control points previously mentioned. Each control point
was established 5 pixels (150 m) from the edge of the route or
road to eliminate edge effects. The point was defined by a set of
3 3 3 pixels around the control point. The cover class that best
represented the vegetation within the 8 100 m2 (3 3 3 pixel
set) area was chosen for each point. The exception was the
intrinsically heterogeneous pajonal class where the occurrence
of the class in only one pixel (900 m2) resulted in the point
being classified as pajonal.

Comparison Between Supervised
and Unsupervised Classifications
A contingency table between cover classes assigned to control
points was constructed for calculation of the Cramer’s V
correlation coefficient. This coefficient was used as a measure
of association between both classified images. The Cramer’s V

Table 1. Description of land cover classes used for supervised and
unsupervised classifications.

Category Description

Crops Annuals crops. such as wheat and oats; main winter

crops sown from mid-June to late August (winter)

and harvested in late December or early January

(early summer).

Sown pastures Pastures are generally part of the crop-rotation

system. They are used during 3 to 6 years, and

then the paddock is used for annual crops again.

Where soil conditions are not appropriate for

cropping, it is frequent that native grasslands are

intersowed with Agropyron sp. or

Festuca arundinacea.

Short grasses Natural grassland used for grazing that was never

ploughed, or successional stages from old crops

or old pastures with a very low cover of the sowed

sown forage species. Species usually found are

short grasses of the genus Stipa, Piptochaetium,

Melica, Paspalum, Poa, Bothriochloa, and

Sporobolus and dicots of the genus Mentha

and Carduus.

Pajonal Grassland stands partially or completely dominated

by Paspalum quadrifarium; generally describing

a 2-phased mosaic of P. quadrifarium patches

over short-grass matrix.

Wetlands Clean or turbid bodies of water.

Urban areas Towns, paved roads, farmhouses, and small patches

of planted trees.
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coefficient ranged from 0, indicating no correlation, to 1, in-
dicating perfect correlation. The chi-square statistic (Zar 1984)
was used to test Cramer’s V correlation coefficients. The Kappa
statistic was also calculated as a measure of agreement between
the 2 images.

RESULTS AND DISCUSSION

Classification Methods
The resulting error matrices for SC and USC are presented in
Tables 2 and 3, respectively. A very good overall accuracy was
obtained for both classification methods. The overall accuracy
of the final map for SC was 86.9% (Kappa ¼ 82.7%); and
87.9% for USC (Kappa ¼ 83.8%). For individual classes, 2
accuracies were calculated: producer’s accuracy, which indi-
cates the percentage of time a vegetation class identified on the
ground is classified in the same category on the map, and user’s
accuracy, which indicates the probability that a pixel classified
into a given class actually represents that class on the ground
(Congalton 1991). Results for the 2 primary classes (pajonal
and short grasses) were similar for the user’s and producer’s
accuracies in both the SC and USC. Short grasses did produce
higher user-accuracy levels, however, the difference was mar-
ginal. The pajonal class produced higher producer accuracies in
the USC, but again the difference was slight. Individual class
accuracies were all at or above the 80% level, meaning both
techniques effectively discriminated these land cover types
(Monserud 1990). Table 4 compares class accuracies for all
classes using both the SC and USC approaches. The low
accuracy values for the pajonal class obtained with SC were
mainly the result of confusion of the pajonal class with the
short-grasses class. Seven of 33 SG control points were
classified as pajonal, whereas 6 of 35 pajonal control points
were classified as short grasses.

The better performance of the USC for short grasses and
pajonal systems was a bit of a surprise, especially given the

better performance of the SC in the other classes. In retrospect,
the results should have been expected. All other categories were
easily delineated by the interpreter because of their unique
physical structure. The ease of identification, combined with
the higher level of spectral homogeneity in these altered systems
(crops, pastures, wetlands, and urban areas) resulted in the
production of fairly clean supervised training classes that did
a good job in identifying these classes across the entire area.
However, the native pajonal and grassland communities were
much more spatially complex, (i.e., mosaic of pajonal, tall
grasses, and short grasses). Therefore, it was difficult for the
interpreter to obtain a clean training signature for each class,
which resulted in poorer performance of the SC for these classes
(Fig. 2). This same trend was obtained for the USC, however,
the spectral training classes obtained by the procedure’s pixel-
selection routine produced cleaner training classes for pajonal
and short-grass systems than that obtained by SC. Classification
accuracy reductions for wetlands and the altered systems were
probably more a function of the low ratio of altered to native
classes represented within the entire scene (e.g., the probability
of obtaining a sample with the proper pixel mix was low).

Overall, both classification methods produced acceptable
results. Evaluation of the SC and USC results indicated

Table 2. Error matrix for the supervised classification. The diagonal
contains correctly classified reference sites. All off-diagonal records are
classification errors. Errors along the horizontal are commission errors
(error of inclusion), and errors along the vertical are omission errors
(error of exclusion).

Classified data

Reference data

C SP SG P W UA Total

%User’s

accuracy

Crops (C) 18 1 19 94.7

Sown pastures (SP) 4 4 100.0

Short grasses (SG) 26 6 33 81.3

Pajonal (P) 7 28 35 80.0

Wetlands (W) 11 11 100.0

Urban areas (UA) 6 6 100.0

Total 18 4 33 35 11 6 n ¼ 107

%Producer’s

accuracy 100.0 100.0 78.8 80.0 100.0 100.0

Overall accuracy: 93/107 ¼ 86.9 %

Kappa: 83.8%

Table 3. Error matrix for the unsupervised classification. The diagonal
contains correctly classified reference sites. All off-diagonal records are
classification errors. Errors along the horizontal are commission errors
(error of inclusion), and errors along the vertical are omission errors
(error of exclusion).

Classified data

Reference data

C SP SG P W UA Total

%User’s

accuracy

Crops (C) 18 1 19 94.7

Sown pastures (SP) 3 1 4 75.0

Short grasses (SG) 1 27 2 1 31 87.1

Pajonal (P) 5 32 37 86.5

Wetlands (W) 1 11 1 13 84.6

Urban areas (UA) 3 3 100.0

Total 18 4 33 35 11 6 n ¼ 107

%Producer’s

accuracy 100.0 75.0 81.8 91.4 100.0 50.0

Overall accuracy: 94/107 ¼ 87.9 %

Kappa: 83.8%

Table 4. Conditional Kappa (ji) for each category used in supervised
(SC) and unsupervised (USC) classifications.

Category

ji (%)

SC USC

Crops 93.7 93.7

Sown pastures 100.0 74.0

Short grasses 69.3 81.3

Pajonal 70.2 79.9

Wetlands 100.0 82.7

Urban areas 100.0 100.0
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a significant agreement between the 2 methods (Cramer’s
V ¼ 0.57; chi square ¼ 4 092 402; df ¼ 25; P , 0.01). The
Kappa value of 57.9% also indicated a good agreement
between both maps (Monserud 1990). Therefore, either ap-
proach can provide essential information needed to assess and
manage pajonal systems.

Ecological Considerations
The pajonal class occupied only 20% of the study area (Table
5). Pajonal remnants resulted in a highly fragmented landscape
with patch sizes ranging between 0.09 and 1 653 ha. By
comparing these results with former descriptions of the region
(e.g., Darwin 1839; Vervoorst 1967), it follows that a drastic
reduction in the area occupied by the pajonal community has
occurred between presettlement times and the present. In
contrast with other regions of the Pampas where native grass-
lands where completely replaced by croplands (Soriano 1991),
pajonal replacement in our study area is better explained by the
expansion of the short-grass matrix. This is also the case for the
entire Paspaletum region where croplands are restricted to
scattered paleodunes (Martinez et al. 2001), and pajonal rem-
nants are mostly associated to nonarable soils (L. P. Herrera, G.
A. Martı́nez, V. Gómez Hermida, P. Laterra, and N. Maceira,
personal communication, March 2002).

This work has identified an important shift between 2 stable
states (tall tussock and short grasses) that represent ecologically
and economically significant changes. Such transition cannot be
explained by the action of fire or by the action of grazing alone.
Successive plowing events are probably a major contribution,
and it seems difficult to reverse because of the apparent
inefficiency of the dominant species to recolonize sites where
fire no longer operates (Laterra et al. 1998; Laterra et al. 2003;
Vignolio et al. 2003). Whereas prescribed burning of pajonal
stands is able to raise the forage productivity and quality as
well as the cattle stocking rates (Laterra 1997; Cauhépé and
Laterra 1998; Laterra et al. 2003), it is mostly suitable for
continuous pajonal stands. In fragmented landscapes, burnings
are interrupted by the short-grass matrix, fire management of
the pajonal becomes too time-consuming, and most stockhold-
er efforts are directed to pajonal replacement rather than
pajonal management.

Because pajonal communities are not represented within
protected areas (Krapovickas and Di Giacomo 1998), its
progressive replacement is a major concern for the conservation
of the Pampas region (Bertonatti and Corcuera 2000). The
pajonal structure provides habitat for many species, i.e., several
species of birds (Comparatore et al. 1996) and some vegetal
species valued as sources of germ plasm (Laterra et al. 2003).
Some of these species are associated with pure pajonal stands,
whereas others use partially the pajonal patches and the short-
grass patches. Therefore, an optimal arrangement for conser-
vation purposes would be a mosaic including the different
communities of the pajonal landscape.

MANAGEMENT IMPLICATIONS

Classification results using the developed procedures did pro-
vide accurate methods for assessing and establishing a baseline
for the different vegetation classes of concern. Both supervised
and unsupervised classification produced similar results, how-
ever, unsupervised classification was better for discriminating
short grass and pajonal areas. Other sources of information
(e.g., multitemporal Landsat data, radar imagery, and the use of
vegetation indexes) might improve classification accuracy and
possibly provide additional information about primary pro-
duction, forage availability through the year, forage quality,
and biodiversity conservation.

Although we have no information on the loss rate of pajonal
communities, the 20% of remnant stands found in the study
area suggests the importance of developing effective conserva-
tion policies. Further work (on a more detailed scale) will allow
for better assessment of anthropogenic disturbances. Comple-
mentary studies at the regional level must now be undertaken to
evaluate the current status of this autochthonous grassland
ecosystem and provide the information needed to develop
sound scientific policies for conservation and sustainable
management over the larger and more complex region.
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CAUHÉPÉ, M. A., AND P. LATERRA. 1998. Manejo de pajonales de paja colorada basado

en estudios ecológicos. Balcarce, Buenos Aires, Argentina: Boletı́n Técnico de la
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Abundancia y relaciones con el hábitat de aves y mamı́feros en pastizales de

Paspalum quadrifarium (paja colorada) manejados con fuego (Provincia de

Buenos Aires, Argentina). Interciencia 21:228–237.

CONGALTON, R. G. 1991. A review of assessing the accuracy of classifications of

remote sensed data. Remote Sensing and Environment 37:35–46.

CONGALTON, R. G. 2001. Accuracy assessment and validation of remotely sensed

and other spatial information. International Journal of Wildland Fire 10:

321–328.

DARWIN, C. 1839. Journal of researches into the natural history and geology of the

countries visited during the voyage of HMS Beagle round the world under the

command of Capt. Fitzroy. London, UK: Henry Colburn Publisher.
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