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Traditional theories of development and evolutionary developmental psychology propose 
that early environmental experiences shape an individual’s developmental trajectory. 
According to the Adaptive Calibration Model (ACM), for example, calibration of speed of 
life history strategy to ecological cues encountered during development contributes to 
behavior that is conditionally adaptive to the organism’s environment. These theories 
emphasize the role of environmental influences and typically do not use designs that 
control potential genetic confounds. To address this methodological problem, the current 
study used a genetically informative design to test whether the phenotypic associations of 
parental instability and abuse with a slow life history factor were confounded by common 
genetic factors. We analyzed twin and singleton data from the Midlife in the United States 
(MIDUS) Survey using two convergent structural equation modeling approaches. Both 
approaches suggest that, when accounting for shared genetic variance across instability, 
abuse, and slow life history, some hypothesized environmental pathways between the 
early environmental measures and slow life history were not required. Once genetic 
factors were controlled, only parental instability was directly related to slow life history, 
while other hypothesized environmental pathways were non-significant. This suggests 
that developmental models that emphasize environmental and contextual pathways 
should control for possible genetic confounds. 
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Evolutionary Developmental Models 

 
Evolutionary perspectives on early life experiences and ontogeny have 

provided differing interpretations of the role of early experiences on the 
plasticity of child development, particularly by focusing on the impact of 
parental quality and household dynamics. The theory of differential 
susceptibility to environmental influence (Belsky & Pluess, 2009) 
proposes that offspring residing within the same household and sharing 
the same biological parents might nonetheless possess differing degrees of 
genetic susceptibility to immediate environmental influences. Thus, more 
“susceptibility genes” increases lability and plasticity in response to the 
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social and contextual cues conveyed by parents and close others to 
developing children. Conversely, fewer susceptibility genes will produce 
less lability and plasticity in development, and produce less perturbation 
and influence to social cues. 

A different subset of evolutionary developmental models propose 
similar ideas as those published by Belsky and colleagues (2009). 
Similarly, the biological sensitivity to context theory, also posits that there 
are systematic individual differences between children in sensitivity to 
rearing environments (Boyce & Ellis, 2005). While acknowledging the 
impact of heritable genetic differences upon development and sensitivity 
to immediate context, allelic variation’s influence on the collective 
calibration of the stress response system (e.g., endophenotypes) effected 
by rearing conditions is more greatly emphasized (Boyce & Ellis, 2005; Del 
Giudice, Ellis, & Shirtcliff, 2011; Ellis, Boyce, Belsky, Bakermans-
Kranenburg & Van IJzendoorn, 2011). Hyperarousal and vigilance, would 
thus be considered as conditional adaptations to environmental features 
contingently shifting the development of physiological (Del Giudice et al., 
2011) and cognitive systems (Ellis, Bianchi, Griskevicius, & Frankenhuis,, 
2017) to produce advantages in survival, navigation, and reproduction 
(Ellis, Figueredo, Brumbach, & Schlomer,, 2009; Figueredo et al., 2006), 
but also generating costs in long-term health and quality of life (Shonkoff, 
Boyce, & McEwen, 2009). Whereas the original differential susceptibility 
theory posits a bet-hedging model, the biological sensitivity to context 
theory adds that individual differences in the degree of sensitivity guides 
children in the regulation of development. These sensitivities therefore 
represent conditional adaptations for adapting to their putative 
environment as cued by conditions of rearing (Ellis et al., 2011; Del 
Giudice et al., 2011).  

The latest evolutionary developmental model proposed is the adaptive 
calibration model (Cabeza de Baca, Wahl, Barnett, Figueredo, & Ellis,, 
2016; Belsky, Steinberg, & Draper, 1991; Del Giudice et al., 2011; Taylor, 
May, & Seeman, 2011). This model builds upon the reasoning used by 
prior evolutionary developmental models, arguing that development is 
conditionally adaptive, but adding the influence of sex and other 
individual differences on developmental regulation. Additionally, the 
adaptive calibration model explicates how stress response systems 
coordinate to create emergent life history strategies that are guided by 
experience during sensitive developmental stages. 

 
Methodological Limitations of 

Evolutionary Developmental Models 
 

Much research in pediatrics and development suggests that adverse 
early experiences profoundly affect different facets of ontogeny (e.g., 
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physiological, social/behavioral, and reproduction). Standard 
interpretations of this literature propose that early life adversity produces 
psychosocial deficits that impair the “normative” development of 
individuals. Subsequent conceptualizations instead emphasize contextual 
factors in influencing child development, proposing a continuum of 
ontogenetic traits in place of a normative paradigm of development in 
humans (Roubinov & Boyce, 2017). For example, the adaptive calibration 
model (described above) posits that different developmental trajectories 
are adaptive under different environmental circumstances. Although the 
development of a slower life history strategy is presumably more adaptive 
under more normative circumstances, the development of a faster life 
history strategy is presumably more adaptive under harsher or more 
unpredictable conditions (Ellis et al., 2009).  

Although standard views of development now incorporate the effect of 
context in early childhood experiences, they continue to ascribe child 
outcomes mostly to environmental inputs. Rowe (1994) provided a 
thought question for researchers who emphasize the influence of the 
environment, suggesting that when researchers failing to use models that 
are both genetically and environmentally controlled (e.g., Ellis, Schlomer, 
Tilley, & Butler, 2012), ascribing developmental effects exclusively to 
environmental inputs is equivalent to defending a confounded model. 
However, the prevailing paradigm within psychology no longer debates 
nature versus nurture but focuses instead on the causal transactions 
among them in influencing individual differences; nonetheless, genetic 
influences upon effects of early life experiences on child development are 
not widely discussed. 

Traditional developmental and evolutionary developmental 
researchers have largely focused on the impact of early adversity and 
parental quality on a range of child outcomes. Both sets of literature have 
generally found that adverse and poor-quality environments are associated 
with poorer child outcomes. Evolutionary developmental models assert 
that poor or deleterious end-points are actually products of a coordinated 
life history strategy designed to assist the child’s navigation and 
manipulation of the environment. This coordinated life history strategy 
thus works across varying levels of the child’s development, including 
physiology, behavior, and cognition. Although evolutionary developmental 
models provide important theoretical and empirical contributions, one 
limitation found in the research is the genetic confounds apparent in the 
purported impact of early environmental contexts. It is possible that 
research tools designed to measure the quality of early rearing 
environments, such as parental abuse, support, marital stability, reflect 
environmental factors that may also be unintentionally influenced by a 
parent’s genetics (e.g., Plomin & Bergeman, 1991). Because a child’s 
environment is largely constructed by the parents and the research 
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conducted on these questions is often genetically uninformed, the degree 
of genetic relatedness between the child and its parents may confound 
associations between parental behaviors during childhood and the 
subsequent offspring behaviors during adulthood. Thus, the offspring may 
come to resemble the parents behaviorally in adulthood because of the 
influence of the parentally-constructed childhood environment; 
alternatively, the offspring may come to resemble the parents behaviorally 
in adulthood because of the common influence of the genes that are 
typically shared by the parent and offspring. Either way, the degree of the 
environmental influence may be impacted via shared heritable 
mechanisms (Plomin & Bergeman, 1991; Plomin, Reiss, Hetherington, & 
Howe , 1994). This is because the vast majority of social parents are also 
genetic parents. Although this circumstance is not universally the case, as 
in adoptive homes (which constitute 2-4% of all families in the USA; 
Adoption Statistics, 2012), it is nevertheless the case that for a 
representative population sample, the overall genetic correlation between 
social parents and offspring, aggregated across all homes, will be 
significant and positive. We are not saying that this relation applies to all 
individual cases, but that the correlations reflected in the sample statistics 
need to be corrected for the effects of these population parameters 

We argue that this heritable influence should work above and beyond 
the gene-environment correlations that have been proposed in 
developmental research, such as active, passive, and evocative gene-
environment correlations. Certain theorists (e.g., Kong, Thorleifsson, 
Frigge, Vilhjalmsson, Young, Thorgeirsson, et al., 2018) have proposed 
that we distinguish between direct effects of genes and those that are 
mediated through the environment, which may be characterized as 
indirect. The concept of a “gene swarm” surrounding the developing 
organism (Hertler, Figueredo, Peñaherrera Aguirre, Fernandes, & 
Woodley of Menie, 2018) refers to the indirect effects transmitted through 
modifications to the developmental environment that are produced by 
genes shared by both the developing offspring and its parents, as well as by 
any related siblings and alloparents residing in the immediate vicinity. 

Although we stress that it is unethical to place the blame on a child for 
the conditions of their early environment, we argue that a child’s shared 
genetics from closely related conspecifics, such as parents, siblings, and 
genetically-related alloparents may nevertheless be a major unintentional 
influence on the conditions of rearing and household environments 
(Hertler et al., 2018). Thus, we argue that the empirical investigation of 
early adverse environments and child outcomes must be fitted with 
genetically-informed models, such as those used in behavioral genetics. 
Biometric analyses that are performed in behavior genetics can parse out 
the influence of both genetic and environmental variation and estimate 
coefficients of the impact of both on outcomes. 
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Furthermore, we believe that it is insufficient to merely consider the 
traditional univariate heritabilities of the individual traits in addressing 
this methodological problem, as has been done by some critics of the 
developmental literature (e.g., Rowe, 1994). We must also address the 
bivariate heritabilities or the genetic correlations among these traits to 
determine whether the associations that have previously been attributed to 
environmental effects are indeed causal pathways and not spurious 
correlations generated by common genetic influences. 

  
The Present Study 

 
We use two convergent methods of estimation (Falconer and DeFries-

Fulker) in the context of factor analytic structural equation model to 
explore these behavioral genetic and developmental relations. The data 
used do not contain an adequate sample of behavior from the parents and 
their offspring to represent the concept of the gene swarm as a whole, but 
we hope that this will be minimally sufficient as a proof of concept to 
demonstrate the novel quantitative methods we developed to address the 
theoretical dilemmas posed by our broader conceptualizations. The goal of 
both approaches was to estimate the genetic contributions of the influence 
of certain parental patterns of behavior on early developmental 
environments on the adult life history outcomes of the offspring, then 
determine what environmentally-mediated effects remained statistically 
significant between the same variables after the prior behavior-genetic 
influences had been statistically controlled.  

For both convergent approaches, we constructed hybrid structural 
models (see Figueredo, Cabeza de Baca, & Black, 2014) by specifying fixed 
parameters with values obtained from the genetically-informative twin 
sample within a structural equations model in which all other parameters 
were estimated from the non-genetically-informative singleton sample. 
The use of this procedure is supported by the fact that our independent 
twin and singleton (non-twin) samples were drawn from the same general 
population, and should therefore reflect the same underlying population 
parameters, such as heritability coefficients, according to statistical 
sampling theory. 
 

General Method 
 
Overview 
 
Sample 

 
We used published data from the Survey of Midlife Development in the 

United States (MIDUS; Brim et al., 2000), which consisted of a telephone 
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interview and two follow-up mail surveys given to a nationally 
representative sample collected by random digit dialing (RDD), limited to 
English speakers in the United States who completed the MIDUS survey 
between the ages of 25-74 (at Wave 1) and again (at Wave 2) when they 
were 35-86. Wave 1 was collected over a one-year period from 1995-1996 
(N= 3487), and Wave 2 was collected over a two year period from 2004-
2006 (N= 2257). The MIDUS sample included data from a genetically-
informative random digit dialing sub-sample of MZ and DZ twins, as well 
as on a non-genetically-informative sample of singletons (non-twins). For 
the present study, only same-sex DZ twin pairs were used for analysis, to 
avoid confounding individual differences between twins with the effects of 
twin sex. 

 
Measures 
 

Parental Instability. Parental instability was conceptualized based on 
Ellis and colleague’s (2009) definition of environmental unpredictability, 
which they defined at the population level as variable and stochastic levels 
of environmental harshness (e.g., illness, disability, and death that is 
agnostic to adaptation). At the individual level, environmental 
unpredictability – in this case parental instability – has been 
conceptualized as events or experiences that increase the upheavals with 
the household during early childhood. For our Parental Instability Scale, 
we used a unit-weighted factor scale (Gorsuch, 1983) composed of the 
following items from the MIDUS Survey: (1) whether one or more parents 
drank often that it caused problems (yes/no); (2) whether one or more 
parents drug use often caused problems (yes/no); (3) the number of moves 
to new neighborhoods or towns during childhood; and (4) whether parents 
were divorced (yes/no). The standardized scores of these items were 
averaged together to yield a composite parental instability score, in which 
higher scores denoted more parental instability. The part-whole 
correlations displayed on Table 1 revealed a satisfactory degree of 
convergent validity between these items. 

Parental Abuse. The Parental Abuse Scale included unit-weighted 
factor scales for the following three sets of parental aggression measures, 
averaged between those of the mothers and fathers: (1) Emotional Abuse; 
(2) Physical Abuse; and (3) Severe Abuse. The items were measured on a 
four-point scale (1= often; 4= never) and reverse-scored prior to 
aggregation. The part-whole correlations displayed on Table 1 revealed a 
satisfactory degree of convergent validity between the measures. 

Slow Life History. The slow life history (K-Factor) construct was 
composed of aggregates of items selected from the MIDUS survey 
assessing several facets of a life history strategy. Each scale was 
constructed using items from subscales measuring various cognitive and 
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behavioral dimensions of life history strategy. The theoretical justifications 
for the construction of each of these scales using MIDUS data were 
published in Figueredo, Vásquez, Brumbach, and Schneider (2004; 2007). 
The current hierarchical system for data aggregation, according to 
domain-specific resource allocations, was detailed in Figueredo, Woodley, 
Brown, and Ross (2013) and had also been applied in previous biometric 
behavior-genetic models by Figueredo and Rushton (2009). 

To avoid the confounding of parental relationship quality content with 
that of the parental behavior predictors used in the present models, the 
Parental Investment Scale and the Family Support Scale were omitted 
from the current life history measurement models. This methodological 
precaution was taken to avoid inflating these correlations by 
circumventing the so-called jingle-jangle fallacy (see Pedhazur & 
Pedhazur-Schmelkin, 1991). In addition, to avoid deleting the records of 
romantically uncommitted individuals due to substantively inapplicable 
and therefore missing data, the Partner Attachment Scale was also omitted 
from the current life history measurement models. Thus, only the 
following subset of items and scales were used in the analyses reported in 
the present paper to estimate the slow life history factor (K): 

1. The Self Scale was composed of MIDUS subscales assessing Insight, 
Persistence, Positive Reappraisals, Self-Directedness, Agency, and 
Financial Status;  

2. The Friends Support Scale was constructed from the MIDUS 
Friends Support Subscale;  

3. The General Social Altruism Scale was composed of MIDUS 
Subscales assessing Close Relationships, Children Relationship 
Quality, and Communitarian Beliefs;  

4. The Religiosity Scale was constructed from the MIDUS Religiosity 
Subscale. 

To show comparability in measuring the latent construct of interest, we 
correlated this restricted life history factor to the inclusive life history 
factor previously published, including the three presently omitted scales, 
as published in Figueredo, et al. (2013). The correlation was high and 
statistically significant (r= .901, p < .001), indicating a high degree of 
convergence between the restricted and the inclusive life history factor. 
There is the possibility that neither this restricted slow LH (K) factor nor 
the original inclusive one, as estimated from the MIDUS data, constitutes 
a comprehensive assessment of life history strategy, but constitutes an 
aggregate of some but not all of the relevant facets (Richardson, Sanning, 
Lai, Copping, Hardesty, & Kruger, 2017). Nevertheless, the restricted life 
history factor we constructed by omitting certain subscales was virtually 
equivalent to the inclusive one previously published. 

The part-whole correlations displayed on Table 1 revealed a satisfactory 
degree of convergent validity between the measures. 
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Table 1 
Unit-Weighted Factor Loadings (Part-Whole Correlations) of the 
Parental Instability, Parental Abuse, and Slow Life History Scales 
Parental Instability 
Parents’ Drinking Caused Problems .730* 
Parent’s Drug Use Caused Problems .701* 
Number of Moves to New Neighborhood .466* 
Parents Separated or Divorced .595* 
Parental Abuse 
Parental Emotional Abuse .874* 
Parental Physical Abuse .893* 
Parental Severe Abuse .839* 
Slow Life History (K) 
Self .680* 
Friend Support .505* 
General Social Altruism .651* 
Religiosity .488* 
*p< .05 
 
Statistical Analyses 
 

All univariate and multivariate analyses were performed using SAS 9.4 
and MPLUS 8. Using SAS PROC STANDARD and DATA, unit-weighted 
common factor scales (Gorsuch, 1983) were estimated as the means of the 
standardized scores for all non-missing subscales on each factor 
(Figueredo, McKnight, McKnight, & Sidani, 2000). Using SAS PROC 
CORR, we also computed the part-whole correlations of the subscales with 
the unit-weighted factor scales. All the unit-weighted factor scales 
estimated were entered as manifest variables for causal analysis. 
Structural modeling was done using SAS PROC CALIS for Study 1 and 
MPLUS for Study 2. Prior to analyses, missing data were imputed using 
PROC MI (imputations= 25). This was done separately for the data of each 
twin, to avoid inflating cross-twin correlations by imputing data on one 
twin from data on another. Subsequently, the data were merged into a 
single data file for the remaining analyses using PROC MEANS. 

All structural equation models were evaluated using the following fit 
indices: χ2 (chi-square); CFI (the Bentler-Bonnett Comparative Fit Index); 
and RMSEA (the Root Mean Square Error of Approximation). Chi-square 
measures the statistical goodness-of-fit of the observed covariance matrix 
to the expected covariance matrix reproduced by the model. A statistically 
significant chi-square is therefore grounds for rejection of the model 
specified, and a nonsignificant chi-square is grounds for its tentative 
acceptance (but see also Gorsuch & Lehmann, 2017; Meehl, 1978). The CFI 
and RMSEA are measures of practical goodness-of-fit for large sample 
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sizes. With such large samples, a small effect will result in a statistically 
significant lack of fit. However, with such large samples, the CFI values 
should be greater than .90 to be considered satisfactory levels of practical 
goodness-of-fit (>.95 for a “close” fit), and the RMSEA values should be 
lesser than .10 to be considered satisfactory levels of practical goodness-of-
fit (<.05 for a close fit), even if statistically significant chi-square values 
are obtained (Bentler & Bonnett, 1980; Browne & Cudeck, 1993; Hu & 
Bentler, 1999). 

 
Results  

 
Study 1  
 
Method  
 

In Study 1, we estimated the genetic variance-covariance matrix and 
then conducted various analyses by means of structural equation 
modeling.  
  
Results  
 

The first approach consisted of the following steps: 
Step 1. We used the MIDUS Twin Sample (Nmz= 352, Ndz= 327) to 

first estimate a univariate-bivariate heritability matrix by applying the 
Falconer (1989) method, representing the genetic variance-covariance 
matrix among all manifest variables (Table 2) to be used in the models 
that follow. 

 
Table 2  
Bivariate Heritabilities (Genetic Covariances) 
 1 2 3 4 5 
1.Parental Instability .394     
2. Parental Emotional Abuse .156 .136    
3. Parental Physical Abuse .156 .115 .257   
4.Parental Severe Abuse .053 .099 .203 .383  
5. Slow Life History Strategy (K) -.051 -.271 -.209 -.195 .385 
 

Step 2. To create the MIDUS behavior-genetic (BG) factor model, we 
subjected that matrix to principal components analysis (PCA), retaining 
the first unrotated principal component based on the Kaiser criterion 
(eigenvalue > 1.0) representing the set of shared genes influencing all five 
manifest indicators in common (Table 3). The retention of this single 
common factor was also strongly supported by the scree plot, and the first 
principal component accounted for 66% of the genetic covariance among 
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the five manifest indicators. Although it is unlikely that this common 
factor explained the separate univariate heritabilities of each of the 
individual traits, it nonetheless did a very good job of explaining the 
manifold of genetic correlations among them. 

 
Table 3 
Unstandardized Factor Loadings (Factor Structure) 
 Shared Genes Common Factor 
Parental Instability .231 
Parental Emotional Abuse .408 
Parental Physical Abuse .408 
Parental Severe Abuse .355 
Slow Life History Strategy (K) -.540 

 
Step 3. We then used the MIDUS singleton sample (N= 4243) to 

impose a confirmatory factor model specified as equivalent to the PCA run 
on the MIDUS twin sample in Step 2, with model parameters fixed as 
equal to the unstandardized PCA factor loadings from the unitary genetic 
common factor. The model was rejectable by all indices assessed: χ2 
(9,4243)= 2399.33, p< .0001, CFI= .565, RMSEA= .250. This indicated 
that the observed phenotypic covariances could not be accounted for by 
the influence of shared genes alone. 

Step 4. We then used the MIDUS singleton sample to test an 
alternative pure environmental pathways model for comparing and 
contrasting to the genetic common factor model constructed in Step 3. 
This model was rejectable by the strict chi-squared criterion, but 
acceptable by the practical and parsimonious indices of fit: χ2 (4,4243)= 
42.53, p< .0001, CFI= .993, RMSEA= .048. This indicated that the 
observed covariances could be accounted for by the influence of 
environmental pathways alone. Nevertheless, the three main 
environmental pathways, from parental instability to both parental abuse 
and offspring slow life history strategy as quite small in magnitude, and 
the pathway from parental abuse to offspring slow life history strategy is 
smaller still. Furthermore, the structural model suffers from uncontrolled 
behavior-genetic confounds. 

Step 5. We then used the MIDUS singleton sample to specify a more 
inclusive hybrid structural equations model containing the fixed pathways 
of the genetic common model and the freely estimated ones of the 
environmental pathways model. This hybrid model was constructed using 
the procedures detailed in Figueredo, et al (2014), by specifying fixed 
parameters with values obtained from the genetically-informative twin 
sample  within  a  structural  equations  model  with  all  other  parameters 
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Figure 1. Genetic Common Factor Model with Standardized Parameter 
Estimates. 
 

 
* p<.05 
 
 
Figure 2. Environmental Pathways Model. 
 

 
 
* p<.05 

 
estimated from the non-genetically-informative singleton sample. Thus, 
we developed hybrid models of the MIDUS singleton (non-twin) data by 
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setting fixed model parameters based on behavior-genetic estimates from 
MIDUS twin data.  

This procedure was theoretically justified given that MIDUS twin and 
singleton (non-twin) data are from two national random digit dialing 
samples drawn from the same USA adult population, meaning that they 
should reflect the same general population parameters (including their 
heritability coefficients) according to statistical sampling theory. Although 
it has often been repeated that heritability coefficients may be sample-
specific, what is technically being implied is that they are population-
specific (given that different samples are often drawn from different 
populations or subpopulations, such as relative poverty levels, social 
classes, nationalities, sexes, and birth cohorts; see Branigan, McCallum, & 
Freese, 2013), as differences between samples drawn representatively 
from the same population reflect random errors of sampling and not 
systematic effects. Although some researchers have suggested that perhaps 
twins might not be representative of singletons, Barnes and Boutwell 
(2013) found little evidence of differences between twins and singletons. 
Schwabe, Janss, & Van Den Berg (2017) conducted a comparison of twins 
and a sample of the entire Dutch population (n = 893,127) and found that 
twin-based estimates were not an artifact of self-selection or due to 
differences between twins and singletons. Moreover, as a part of a separate 
investigation into early rearing influences on alcohol use disorder, the 
third author conducted an analysis comparing the MIDUS twins and 
singletons in terms of demographics (e.g., socioeconomic status), early 
environment (e.g., routines, adverse experiences), and alcohol use in 
adulthood. Out of the more than 30 tests (α = .05), only three were 
statistically significant (see Appendix A, Table A1). Furthermore, in these 
three cases the differences between the groups were trivial in magnitude. 
The MIDUS twins therefore appear to be generally representative of the 
MIDUS singletons.   

Step 6. The inclusive hybrid gene-environment (G-E) developmental 
structural equations model created in Step 5 was acceptable in terms of the 
practical and parsimonious indices of fit, although it was still rejectable by 
the stricter chi-squared criterion: χ2 (3,4243)= 25.99, p <.0001, CFI= .996, 
RMSEA= .043. Nevertheless, some of the environmental pathways in this 
hybrid model turned out to be statistically nonsignificant. We therefore 
specified and estimated a restricted hybrid gene-environment (G-E) 
developmental  structural  equations model that  eliminated (fixed at zero) 
some of the causal pathways while retaining all of the fixed pathways of 
the genetic common factor model. This restricted hybrid gene-
environment (G-E) developmental structural equations model was also 
rejectable by the strict chi-squared criterion, but acceptable the practical 
and parsimonious indices of fit: χ2 (5,4243)= 41.38, p <.0001, CFI= .993, 
RMSEA= .041. 
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Figure 3. Inclusive Hybrid G-E Developmental Structural Equations 
Model (Schematic). 
 

 
 

* p<.05 
 

To discriminate between the inclusive and restricted hybrid models, we 
therefore conducted a nested model comparison and the differences in the 
main fit indices were as follows: Δχ2 (2,4243)= 15.39, p = .0005, ΔCFI= -
.003, ΔRMSEA= -.002. This means that although the chi-squared 
difference was statistically significant, due to the huge sample size (N= 
4243), the differences in the practical and parsimonious indices of fit were 
negligible in magnitude. We therefore tentatively accepted restricted 
hybrid model based on the principle of parsimony. These results are 
shown in Figure 4. 
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Figure 4. Restricted Hybrid G-E Developmental Structural Equations 
Model. 
 

 
 
* p<.05 
 
Discussion of Results for Study 1 
 

The genetic common factor model with fixed parameters, imported 
from MIDUS BG factor model based on the MIDUS Twin Sample data, 
was found rejectable by all pertinent statistical and practical criteria: (1) 
the observed covariances among variables was not adequately explained 
by the single BG factor alone; and (2) the unitary BG factor nevertheless 
accounted for statistically significant component of variance in the MIDUS 
singleton data. 

Both the environmental pathways model and the hybrid G-E 
developmental SEM show excellent practical indices of fit: (1) despite 
statistically significant χ2 values due to huge sample size (N= 4243); and 
(2) despite the imposition of multiple fixed model parameters imported 
from MIDUS BG factor model. Furthermore, the restricted hybrid G-E 
developmental SEM fits nearly as well as environmental pathways model 
and was more parsimonious by one degree of freedom. 

Two of the environmental pathways model structural parameters 
leading to the slow LH factor were no longer required by the hybrid model. 
These two structural relations were instead modeled as spurious due to the 
common causal influence of shared genes factor. In total, two out of three 
environmental pathways in the structural model could therefore be 
eliminated without appreciably compromising model fit. 
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The three environmental factor loadings of Par Abuse factor remain, as 
the observed covariances among indicators of Par Abuse were not 
completely explained by the fixed factor loadings of the shared genes 
common factor. Thus, the behavior-genetic critiques (e.g., Rowe, 1994) of 
genetically-uninformed research in developmental psychology appear to 
be valid, in that at least some developmental pathways are entirely 
explainable by shared genetic influence. Furthermore, these include some 
pathways commonly identified in psychosocial research on life history 
development. 

 
Study 2 

 
Method 
 

In Study 2, we attempted to reproduce the results of Study 1 using a 
DeFries-Fulker (DF) model-fitting approach. The DF model (DeFries & 
Fulker, 1985; 1988) was originally developed as part of a regression-based 
approach for data from selected samples (e.g., probands selected on an 
outcome such as low reading performance). The model was later extended 
to other contexts and Rodgers and McGue (1994) showed that it yields 
unbiased estimates of additive genetic (the A component in classical twin 
models) and shared environmental (the C component in classical twin 
models) effects in unselected samples. Researchers in behavioral genetics 
continue to use the DF model (e.g., Christopher et al., 2016) and recent 
studies have also applied it fields such as criminal justice (Barnes & and 
Boutwell, 2013; Nedelec & Beaver, 2014; Teneyck & Barnes, 2015). 

The DF model is typically given as: 
 

        (1) 
 
where  is the target twin’s score on an outcome of interest,  is the co-

twin’s score on the outcome, and  is the coefficient of genetic relatedness 
among the twins (MZ twins= 1.00 and DZ twins= .50). provides an 
initial test for genetic influence in the context of selected samples1. In 
unselected samples,  is often statistically non-significant and not 
interpreted because there is no expectation of average target twin 
differences on the outcome as a function of genetic relatedness (Smith & 
Hatemi, 2013). In both selected and unselected samples,  and provide 
unbiased estimates of shared environmental and addictive genetic 
influence, respectively (i.e., A and C; Rodgers & McGue, 1994). 

 
1In studies of selected samples, all target twins are selected on the basis of their deviant 
scores on the outcome relative to the population mean and therefore all have deviant 
scores. The current study examines an unselected sample—no twins were selected on the 
basis of deviant scores. 
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Results 
 

In Study 2, we integrated the DF model into the structural equation 
modeling (SEM) framework to examine whether the results described in 
Study 1 could be reproduced using an alternative approach. 

Step 1. First, we constructed the same unit-weighted factor scale 
composites for the three convergent parental abuse indicators, as used in 
Study 1. We carried out this procedure because we wished to model the 
three abuse indicators as reflecting the additive genetic variance they 
shared, rather than specifying a term to capture the genetic variance in 
each type of abuse.  

Step 2. Next, we specified a hybrid DF developmental SEM (see Figure 
5) in which K-factor scores, parental instability, and the parental abuse 
indicators had their own DF equations. As in Study 1, this hybrid model 
was constructed using the procedures detailed in Figueredo, et al. (2014). 
This model allowed us to estimate the direct and indirect effects of early 
environment on slow life history (K) while controlling for potentially 
confounding genetic factors, as in the previously tested inclusive hybrid 
gene environment developmental structural equations model (see Figure 
3). Because the objective in this study was to control common genetic 
factors that might confound effects of early environment on K, we omitted 

 (i.e., the term capturing C) from each equation and did not distinguish 
shared and non-shared variance. As mentioned in Step 1, all three parental 
abuse indicators were regressed on one genetic variable (co-twin 
component abuse scores * zygosity). We specified a group-specific factor 
that subsumed the covariance among these indicators not accounted for by 
genetic factors (i.e., the environmental variance they shared). We specified 
a common genetic factor that subsumed in each equation (i.e., the 
term capturing A). As in Study 1, this factor subsumed common genetic 
liability to the indicators of the three phenotypes. Finally, the cascade of 
effects specified in the previously tested environmental pathways model 
was included. Each type of abuse was regressed on instability, rather than 
their common factor, so we could examine whether instability had 
differential effects on the different types of abuse. We tested this model 

and fit to the data was excellent (2 (10) = 15.52, p= .11; CFI= 1.00; 
RMSEA= .02).  
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Figure 5. Hybrid DF Developmental SEM — Twins. 
 

 
 
Note: Only statistically significant standardized path coefficients (p < .05) 
effects displayed.  
 

Step 3. Using the model tested in Step 2, we estimated the indirect 
effects of the common genetic factor on each of the variables in model. 
Using the MIDUS singleton data, we then tested a model in which these 
estimates served as common genetic factor loadings. That is, a common 
genetic factor was specified and its loadings were fixed to the previously 

estimated indirect effects. Model fit was excellent (2 (2)= 1.49, p= .49; 
CFI= 1.00; RMSEA= .02). 
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Figure 6. Hybrid Developmental SEM — Singletons 
 

 
 
 
Discussion of Results for Study 2 
 

Using Study 2, we were able to reproduce our initial findings, 
suggesting they are robust to the analytic approach employed. Once the 
genetic factors common to parental instability, parental abuse, and K are 
controlled; effects of parental instability on abuse and of parental abuse on 
K become statistically non-significant. Only the effect of parental 
instability on K remained statistically significant. This suggests that the 
first two effects are spurious while the third is robust to genetic controls. It 
should be noted, however, that the shared genes factor still exerted an 
indirect effect on K through parental instability. 
 

Summary and Concluding Discussion 
 

Evolutionary models have provided important theoretical and 
empirical contributions to our understanding of human development. One 
methodological limitation in this literature, however, is that most research 
designs have been non-genetically-informative—they have not accounted 
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for potential confounding by common genetic influences that might be 
producing spurious correlations among the presumed developmental 
causes and effects. In the current study, we used two convergent methods 
of heritability estimation (Falconer and DeFries-Fulker) in the context of 
factor analytic structural equation modeling to address this gap in the 
literature. Both approaches used the MIDUS twin sample to produce 
estimates of the purely genetic contributions of the influence of certain 
parental patterns of behavior on early developmental environments on the 
adult life history outcomes of the offspring. These estimates were then 
were used to determine what environmentally-mediated effects remained 
statistically significant in the MIDUS twin and singleton samples once 
such genetic common factors were controlled.  

The two genetically informative approaches yielded nearly identical 
results, indicating our estimates are robust to the analytic approach 
employed. In both cases, once the genetic factors common to parental 
instability, parental abuse, and slow life history (K) are controlled, the 
effects of parental instability on abuse and of parental abuse on slow life 
history (K) could be eliminated without appreciable loss of model fit. Only 
the effect of parental instability on slow life history (K) needed to be 
retained and remained statistically significant. This suggests that the first 
two effects are spurious while the third is robust to genetic controls. These 
findings extend upon earlier studies suggesting that genetic confounding 
may be an important concern for developmental research (Barbaro, 
Boutwell, Barnes, & Shackelford, 2017), highlight the importance of 
genetically informative designs in studies of human life history 
development, and provide case illustrations of two computationally 
tractable approaches to addressing potentially confounding genetic 
factors. 

Limitations of the Studies.  Several limitations should be kept in mind, 
however, when interpreting our results. It remains possible that specific 
risk factors in the non-shared environment, or non-transmitted alleles, 
could play a key role in explaining the development of life history strategy. 
We did not examine those factors in the current study, but they could be 
included in models like ours in future research. For example, the concept 
of gene swarm (Hertler et al., 2018) has been put forth to explain the 
construction and maintenance of the child’s immediate environment. 
According to Hertler and colleagues (2018), a gene swarm is generated by 
the high degree of genetic relatedness among close kin conspecifics that is 
in constant transaction with the immediate environment, which in turn 
influences a child’s development. Family environments that have a denser 
gene swarm (i.e., more individuals genetically related to the child) should 
have more influence on a child’s development. For instance, this condition 
can obtain where family groups are either larger or closer or both, as with 
slow life history strategists (Figueredo et al., 2006). 
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In addition, the developmental indicators taken from the MIDUS 
survey were based entirely on retrospective self-report. Such data may 
contain biases from either of two sources: the retrospective part and the 
self-report part. Retrospective data may suffer from simple inaccuracy of 
recall, especially of early childhood events; they may also suffer from 
memory reconstruction in which undesirable life outcomes may bias 
respondents towards negative interpretations of the past. Self-report data 
may suffer from self-presentation bias towards socially desirable 
responding. 

Nevertheless, there are several substantial strengths of the present 
study that serve to advance the discourse in the relevant developmental 
literature, and these include the use of nationally representative samples, 
genetically informative designs, and the convergence of two modeling 
approaches. 
 
Author notes:  Corresponding Author: Aurelio José Figueredo, PhD, 
Department of Psychology, 1503 East University Boulevard, School of 
Mind, Brain, and Behavior, College of Science, University of Arizona, 
Tucson, AZ USA 85721-0068; Email: ajf@email.arizona.edu 
 

 
References 

 
Adoption Statistics. (2012, February 02). Retrieved from: 

https://pages.uoregon.edu/adoption/topics/adoptionstatistics.htm 
Barbaro, N., Boutwell, B. B., Barnes, J. C., & Shackelford, T. K. (2017). Genetic 

confounding of the relationship between father absence and age at menarche. 
Evolution and Human Behavior, 38, 357-365. 

Barnes, J. C., & Boutwell, B. B. (2013). A demonstration of the generalizability of 
twin-based research on antisocial behavior. Behavior Genetics, 43, 120–131. 

Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal 
development, and reproductive strategy: an evolutionary theory of 
socialization. Child Development, 62, 647–670. 

Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: differential susceptibility 
to environmental influences. Psychological Bulletin, 135, 885-908. 

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness-of-fit in 
the analysis of covariance structures. Psychological Bulletin, 88, 588-600.  

Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An 
evolutionary–developmental theory of the origins and functions of stress 
reactivity. Development and Psychopathology, 17, 271-301. 

Branigan, A. R., McCallum, K. J. & Freese, J. (2013). Variation in the heritability 
of educational attainment: An international meta-analysis. Social Forces, 92, 
109-140.  

Brim, O. G., Baltes, P. B., Bumpass, L. L., Cleary, P. D., Featherman, D. L., 
Hazzard, W. R., … & Shweder, R. A. (2000). National Survey of Midlife 
Development in the United States (MIDUS), 1995-1996 [Computer file]. 

mailto:ajf@email.arizona.edu
https://pages.uoregon.edu/adoption/topics/adoptionstatistics.htm


FIGUEREDO ET AL. 

21 

 

ICPSR version. Ann Arbor, MI: DataStat, Inc./Boston, MA: Harvard Medical 
School, Dept. of Health Care Policy [producers], 1996. Ann Arbor, MI: Inter-
university Consortium for Political and Social Research [distributor], 2000. 

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In 
K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (p. 136-
162). Newbury Park, CA: Sage.  

Cabeza de Baca, T., Wahl, R.A., Barnett, M.A., Figueredo, A.J., & Ellis, B.J. 
(2016). Adversity, adaptive calibration, and health: The case of disadvantaged 
families. Adaptive Human Behavior and Physiology, 2, 93-115.  

Christopher, M. E., Keenan, J. M., Hulslander, J., DeFries, J. C., Miyake, A., 
Wadsworth, S. J., ... & Olson, R. K. (2016). The genetic and environmental 
etiologies of the relations between cognitive skills and components of reading 
ability. Journal of Experimental Psychology: General, 145, 451-466. 

Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration 
model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 
1562-1592. 

DeFries, J. C., Fulker, D., W. (1985). Multiple regression analysis of twin data. 
Behavior Genetics 15, 467–473 

DeFries, J. C., & Fulker, D. W. (1988). Multiple regression analysis of twin data: 
Etiology of deviant scores versus individual differences. Acta Geneticae 
Medicaeet Gemellologiae: Twin Research 37, 205–216. 

Ellis, B. J., Bianchi, J., Griskevicius, V., & Frankenhuis, W. E. (2017). Beyond risk 
and protective factors: An adaptation-based approach to resilience. 
Perspectives on Psychological Science, 12, 561-587. 

Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & Van 
IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An 
evolutionary–neurodevelopmental theory. Development and 
Psychopathology, 23, 7-28. 

Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). 
Fundamental dimensions of environmental risk: The impact of harsh versus 
unpredictable environments on the evolution and development of life history 
strategies. Human Nature, 20, 204-268. 

Ellis, B. J., Schlomer, G. L., Tilley, E. H., & Butler, E. A. (2012). Impact of fathers 
on risky sexual behavior in daughters: A genetically and environmentally 
controlled sibling study. Development and Psychopathology, 24, 317-332. 

Falconer, D. S. (1989). Introduction to quantitative genetics, 3rd ed. Burnt Mill, 
Harlow, Essex: Longman Scientific and Technical 

Figueredo, A.J., Cabeza de Baca, T., & Black, C.J. (2014). No matter where you 
go, there you are: The genetic foundations of temporal stability. Journal of 
Methods and Measurement in the Social Sciences, 5, 76-106. 

Figueredo, A.J., McKnight, P.E., McKnight, K.M., & Sidani, S. (2000). 
Multivariate modeling of missing data within and across assessment waves. 
Addiction, 95 (Supplement 3), S361-S380. 

Figueredo, A.J., Vásquez, G., Brumbach, B.H., & Schneider, S.M.R. (2004). The 
heritability of life history strategy: The K-factor, covitality, and personality. 
Social Biology, 51, 121-143. 



HYBRID BEHAVIOR-GENETIC MODELS 

22 

 

Figueredo, A. J., Vásquez, G., Brumbach, B. H., Schneider, S. M., Sefcek, J. A., 
Tal, I. R., ... & Jacobs, W. J. (2006). Consilience and life history theory: From 
genes to brain to reproductive strategy. Developmental Review, 26, 243-275. 

Figueredo, A.J., Vásquez, G., Brumbach, B.H., & Schneider, S.M.R. (2007). The 
K-factor, covitality, and personality: A psychometric test of life history theory. 
Human Nature,18, 47-73. 

Figueredo, A. J., Woodley, M. A., Brown, S. D., & Ross, K. C. (2013). Multiple 
successful tests of the Strategic Differentiation-Integration Effort (SD-IE) 
hypothesis. Journal of Social, Evolutionary, and Cultural Psychology, 7, 361-
383. 

Figueredo, A.J., & Rushton, J.P. (2009). Evidence for shared genetic dominance 
between the general factor of personality, mental and physical health, and life 
history traits. Twin Research and Human Genetics, 12, 555–563. 

Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence 
Erlbaum Associates. 

Gorsuch, R. L., & Lehmann, C. (2017). Chi-square and F Ratio: Which should be 
used when? Journal of Methods and Measurement in the Social Sciences, 8, 
58-71. 

Hertler, S., Figueredo, A.J., Peñaherrera Aguirre, M. Fernandes, H.B.F., & 
Woodley of Menie, M.A (2018). Life History Evolution: A Biological Meta-
Theory for the Social Sciences. New York, NY: Palgrave Macmillan. ISBN 
978-3-319-90125-1. 

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance 
structure analysis: Conventional criteria versus new alternatives.  Structural 
Equation Modeling, 6, 1–55. 

Kong, A., Thorleifsson, G., Frigge, M. L., Vilhjalmsson, B. J., Young, A. I., 
Thorgeirsson, T. E., ... & Gudbjartsson, D. F. (2018). The nature of nurture: 
Effects of parental genotypes. Science, 359, 424-428. 

Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, 
and the slow progress of soft psychology. Journal of Consulting and Clinical 
Psychology, 46, 806–834. 

Nedelec, J. L., & Beaver, K. M. (2014). The relationship between self-control in 
adolescence and social consequences in adulthood: Assessing the influence of 
genetic confounds. Journal of Criminal Justice, 42, 288-298. 

Pedhazur, E. J., & Pedhazur-Schmelkin, L. P. (1991). Measurement, Design, and 
Analysis: An Integrated Approach. Mahwah, NJ: Lawrence Erlbaum 
Associates. 

Plomin, R., & Bergeman, C. S. (1991). The nature of nurture: Genetic influence on 
“environmental” measures. Behavioral and Brain Sciences, 14, 373-386. 

Plomin, R., Reiss, D., Hetherington, E. M., & Howe, G. W. (1994). Nature and 
nurture: genetic contributions to measures of the family environment. 
Developmental Psychology, 30, 32-43. 

Richardson, G. B., Sanning, B. K., Lai, M. H., Copping, L. T., Hardesty, P. H., & 
Kruger, D. J. (2017). On the psychometric study of human life history 
strategies: State of the science and evidence of two independent dimensions. 
Evolutionary Psychology, 15, 1-24. 



FIGUEREDO ET AL. 

23 

 

Rodgers, J. L., & McGue, M. (1994). A simple algebraic demonstration of the 
validity of DeFries-Fulker analysis in unselected samples with multiple 
kinship levels. Behavior Genetics, 24, 259-262. 

Roubinov, D. S., & Boyce, W. T. (2017). Parenting and SES: Relative values or 
enduring principles?. Current Opinion in Psychology, 15, 162-167. 

Rowe, D.C. (1994). The Limits of Family Influence: Genes, Experience, and 
Behavior. New York, NY: Guilford. 

Schwabe, I., Janss, L., & Van Den Berg, S. M. (2017). Can we validate the results 
of twin studies? A census-based study on the heritability of educational 
achievement. Frontiers in Genetics, 8, 160. 

Shonkoff, J. P., Boyce, W. T., & McEwen, B. S. (2009). Neuroscience, molecular 
biology, and the childhood roots of health disparities: Building a new 
framework for health promotion and disease prevention. Journal of the 
American Medical Association, 301, 2252-2259. 

Taylor, S. E., May, B. M., & Seeman, T. E. (2011). Early adversity and adult health 
outcomes. Development and Psychopathology, 23, 939–954. 

Teneyck, M., & Barnes, J. C. (2015). Examining the impact of peer group 
selection on self-reported delinquency: A consideration of active gene–
environment correlation. Criminal Justice and Behavior, 42, 741-762. 



HYBRID BEHAVIOR-GENETIC MODELS 

24 

 

Appendix A 
 
Table A1  
Comparison of Singletons and Twins 
Variable χ2 or t p SMD F p 
# times moved to new neighborhood 1.178t .239  .134 .715 
Family on welfare  .074 .786    
Ever homeless .252 .616    
Parents separated/divorced  .187 .665    
Consistent rules – Mother .417t .676  .197 .692 
Consistent rules – Father 2.972t .003* -.05 1.776 .183 
Emotional abuse – Mother .830t .407  .399 .528 
Emotional abuse – Father  .494t .622  .304 .581 
Physical abuse – Mother -.937t .349  .399 .046* 
Physical abuse – Father -.404t .686  1.753 .185 
Severe physical abuse – Mother 1.352t .176  .053 .818 
Severe physical abuse – Father 1.266t .206  1.281 .258 
Father education -.145t .885  .298 .585 
Mother education .597t .551  1.002 .317 
Perceived financial level growing up -2.374t .018* .039 .190 .663 
SES Index – Father  .236t .813  .123 .726 
SES Index – Mother  -.023t .982  .068 .795 
Had at least one drink (past mo.) .297 .586    
How often at least one drink (past mo.) 3.429 .634    
How many days per month 4.996 .172    
# Drinks on drinking days 10.944 .362    
Times had 5+ drinks on same occasion 
(past mo.) 

18.686 .347    

Emotional problems from drinking (12 
mo.) 

.526 .468    

1+ month much time drinking (12 mo.) .039 .844    
Had to drink more to get effects (12 
mo.) 

.261 .610    

Alcohol problem (12 mo.) .018 .894    
# times alcohol more than intended (12 
mo.) 

2.656 .753    

# times alcohol effects at work (12 mo.) 5.186 .394    
* p< .05 
Notes: t = t-statistic; SMD = Standardized mean difference; F-statistics 
used to test equality of the variance. SES = Socioeconomic status; mo. = 
month. SMD omitted if test was statistically non-significant. 
 


