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In the early 1900s, physics was the archetypical science and measurement was equated 
with mathematization to real numbers. To enable the use of mathematics to draw empirical 
conclusions about psychological data, which was often ordinal, Stevens redefined 
measurement as “the assignment of numerals to objects and events according to a rule.” 
He defined four scales of measurement (nominal, ordinal, interval, and ratio) and set out 
criteria for the permissible statistical tests to be used with each. Stevens' scales of 
measurement are still widely used in data analysis in the social sciences. They were 
revolutionary but flawed, leading to ongoing debate about the permissibility of the use of 
different statistical tests on different scales of data. Stevens implicitly assumed 
measurement involved mapping to real numbers. Rather than rely on Stevens' scales, 
researchers should demonstrate the mathematical properties of their data and map to 
analogous number sets, making claims regarding mathematization explicit, defending 
them with evidence, and using only those operations that are defined for that set. 
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Social scientists seeking to interpret data continue to rely heavily on a 
framework advanced by Stevens in 1946. Stevens (1946, p. 677) defined 
measurement as “the assignment of numerals to objects or events according 
to a rule.” He set out four different scales of measurement (nominal, 
ordinal, interval, and ratio) and rules for determining the statistical tests 
that were permissible for each. Although Stevens’ foundational paper is 
rarely taught, this paradigm remains the primary approach to measurement 
for the social sciences.  

One of the leading critiques of Steven’s framework is that his restrictions 
on the type of statistical tests to be used for different scales of measurement 
are unsupported. The academic debate has contributed to a varied practice. 
While some social scientists attempt to categorize their data as one of 
Stevens’ four types and follow his guidelines regarding the permissible 
statistical tests to use, others disregard his limitations on permissible 
statistics.  

Stevens’ framework was revolutionary, yet flawed. Physicists and 
psychologists of the period equated measurement with mathematization to 

 
1 The author would like to thank Jeremy Martin for his patient accommodation of a total 
stranger who arrived without an appointment to discuss set theory. The views expressed 
are those of the author and do not necessarily represent views of the Department of Defense 
or its components. 
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real numbers. To expand the definition of “measurement,” he invented a 
typology of scales and limits on “permissible” operations to help ensure that 
mathematical conclusions about data that lacked the mathematical 
properties of real numbers led to valid empirical conclusions. In so doing, 
he set the stage for continuing confusion among social scientists about the 
use of mathematical inference to draw conclusions about empirical data. 

This paper describes Stevens’ framework for measurement in the social 
sciences and the debate about the framework. It argues that Stevens’ 
objective is better described as “mathematization” than “measurement.” It 
explains how errors in mathematization can lead to incorrect empirical 
conclusions. It then traces some of the academic debate to the flaws in this 
early framework. The paper concludes by setting out the implications for 
quantitative social science research. 
 

What Does It Mean to “Measure”? 
 

In 1932 the British Association for the Advancement of Science 
appointed a committee composed of physicists and psychologists to 
evaluate whether “quantitative estimates of sensory events” were possible; 
or, in other words, whether such sensations were measurable. By “sensory 
events,” they meant human sensations in response to physical stimuli, such 
as experiences of brightness when exposed to light or noise when exposed 
to sounds. On the meaning of “quantitative estimate” or “measurement,” 
however, they were not able to come to any agreement. After eight years of 
debate, the committee concluded that “no practicable amount of discussion 
would enable them to express an agreed opinion” (Ferguson et al., 1940, p. 
334).  

Measurement was considered to be the bridge between the empirical 
world and the logic of mathematics. In the words of the physicist William 
Thomson (Lord Kelvin) in 1883: 

I often say that when you can measure what you are speaking about, and 
express it in numbers, you know something about it; but when you cannot 
measure it, when you cannot express it in numbers, your knowledge is of a 
meagre and unsatisfactory kind; it may be the beginning of knowledge, but you 
have scarcely in your thoughts advanced to the state of Science, whatever the 
matter may be. (1891, p. 80) 

Psychologists believed that only if they could measure what they studied 
could they use mathematics to make inferences, and only if they could 
measure could psychology have the social status accorded to physicists, the 
archetypical scientists (Michell, 2005). However, human sensations could 
not be measured as the term had historically been defined.  

“Measurement” meant the expression of the quantity of an attribute Y as 
a ratio of another quantity of that same attribute, X (see Michell, 2005; 
Ferguson, et al., 1940). The canonical example is the measurement of 
length. Lengths can be added together through the physical process of 
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laying rods end to end. The length of a rod X can be chosen as a standard to 
use to express the lengths of other rods and all other lengths can be 
expressed in terms of X as a ratio. To say that, for example, “the length of 
rod Y is two (in terms of X)” means that if two instances of rod X were laid 
end to end, their length together would be the same as that of rod Y.  

 
Table 1 
H. M. Johnson’s Properties for Measurability 
Additivity The properties of two members can be physically 

added to be equivalent to the property of another 
member  
 

Asymmetrical The properties of two members, a and b, are such that 
either a > b, a = b, or a < b 
 

Determinate Measurability is limited by the ability to determine 
these equivalences (e.g., the accuracy of the balance) 
 

Transitive If  a > b and b > c then a > c 
 

Group Property For the properties of any two objects, a and b, there is 
a third object for which the property is a + b; the 
number of objects that have the property is infinite 
 

Commutative If a + b = c then b + a = c 
 

Associative (a + b) + c = a + (b + c) 
 

Axiom of Equals If a = c and b = d then a + b = c + d and a + d = b + c 
 

Neutral Member If there is an opposite of the property, then there must 
be an object that has none of the property, z, such that 
z + a = a + z = a 
 

Negative For every object with property a, there must be an 
object with a property of negative effect, b, such that a 
+ b = z (the neutral member) 
 

Note. Adapted from H. M. Johnson (1936) 
 

The physicist Campbell referred to this definition as “direct” 
measurement (and later, “fundamental” measurement). He  distinguished 
it from “indirect” (later “derived”) measurement,” which he defined as 
attributes that are mathematically derived from fundamental measures, 
such as area (a function of length), or density (a function of mass and 
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volume) (Ferguson, et al. 1940; Campbell, 1957) Quantities were then 
mapped to a numeral sequence or “scale” in such a way that fixing the first 
point of the scale determined the rest.  

This concept of measurement implies that to be measurable, a thing 
must empirically demonstrate certain mathematical properties. For 
Campbell, some physical process of addition or concatenation was required 
for an attribute to be measurable. H. M. Johnson (1936), a critic of early 
psychometrics, described in detail the mathematical properties that the 
subject of study must demonstrate empirically for a thing to be measurable. 
(Table 1).  

This posed little problem for physicists, who   worked   primarily   with   
attributes   that   had   these properties, but most of the work of psychologists 
involved the discovery or exploration of relationships of order. For example, 
when exposed to noise, subjects could rank their sensations of sound in 
terms of greater or lesser, but it could not be demonstrated empirically that 
two noises of the same loudness created twice the sensation of sound. 
Human sensations were neither countable nor additive and could not be 
expressed as a ratio.  

Early psychologists wrestled with questions regarding the nature of their 
data and whether and how that data might be measured (see, e.g., 
Thurstone, 1929; Johnson, 1936). They proposed to widen the definition of 
measurement. This proposal provoked vociferous objections, such as 
Guild’s response, “In Denial of the Measurability of Sensation Intensity”: 

There is no doubt that the desire of psychologists to be able to apply the 
processes and concepts of measurement to the field of sensory experience is 
due to the success of such processes in physics and geometry, and that their 
aim is to introduce the same kind of definitiveness into descriptions of sensory 
behaviour that quantitative laws give to descriptions of physical phenomena. . 
. . What some of them (not all) appear to be unable or unwilling to do is to 
realize that they cannot obtain this significance in relations involving numbers 
derived from processes of types differing fundamentally from those which form 
the basis of all physical measurements. To insist on calling these other 
processes measurement adds nothing to their actual significance but merely 
debases the coinage of verbal intercourse. Measurement is not a term with 
some mysterious inherent meaning, part of which may have been overlooked 
by physicists and may be in course of discovery by psychologists. (Ferguson et 
al., 1940, p. 345) 

However, drawing on Campbell, Stevens’ 1946 paper advanced a new 
definition of “measurement” and a way to measure psychological data. His 
framework became canonical in psychometrics, and from there in statistics 
for the social sciences more broadly. He defined measurement as “the 
assignment of numerals to objects and events according to rules” (Stevens, 
1946, p. 677).  Different rules of assignment lead to different “scales” or 
“levels” of measurement: nominal, ordinal, interval, and ratio. (Table 2). 
The problem then becomes that of making explicit (a) the various rules for 
the assignment of numerals, (b) the mathematical properties (or group 
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structure) of the resulting scales, and (c) the statistical operations 
applicable to measurements made with each type of scale (Stevens, 1946). 

In Stevens’ framework, researchers select the appropriate scale of 
measurement based on their ability to demonstrate the mathematical 
properties of the subject of study. A researcher with a means to determine 

 
Table 2 
Stevens’ scales of measurement (Stevens 1946, p. 648) 
Scale Basic Empirical 

Operations 
Mathematical 
Group Structure 

Permissible 
Statistics 
(Invariantive) 

Nominal Determination of 
equality 

Permutation group 
𝑥′=f(x) 
f(x) means any 
one-to-one 
substitution 

Number of cases 
Mode 
Contingency 
correlation 

Ordinal Determination of 
greater or less 

Isotonic group 
 𝑥′=f(x) 
f(x) means any 
monotonic 
increasing function 

Median 
Percentiles 

Interval Determination of 
equality of intervals 
or differences 

General linear 
group 
 𝑥′=ax+b 

Mean 
Standard 
deviation 
Rank-order 
correlation 
Product-
moment 
correlation 

Ratio Determination of 
equality of ratios 

Similarity group 
 𝑥′=ax 

Coefficient of 
variation 

 
whether two quantities are equal can create a nominal scale; a researcher 
with the means to determine whether one quantity is greater than another 
can create an ordinal scale; a researcher with the means to determine if 
differences in quantity are equal can create an interval scale; and the 
researcher with the means to tell if two ratios of a quantity are equal can 
create a ratio scale.  

Stevens also specified what he called “permissible statistics” for each 
scale. His criterion for permissible statistics was that the mathematical 
operations yield answers that were independent of the arbitrary 
representational choices of the researcher. For example, data measured on 
an ordinal scale should yield the same result for any order-preserving 
transformation of the scale; permissible operations include calculation of 
medians or percentiles. 
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Starting in the late 1950s, mathematical psychologists built on the work 
of Stevens and others to develop Representational Measurement Theory 
(RMT) (see, for example, Luce and Tukey, 1964; Luce and Suppes, 2002). 
RMT defines a “theory of measurement” as “a precise specification of how a 
scale is formed” where a “scale” is “a set of structure preserving mappings . 
. .  from the qualitative or empirically based structure into a structure from 
pure mathematics” (Narens, 2002, p. 757). 

Stevens’ framework is still used and debated. The highly abstract and 
mathematical nature of the RMT literature makes it inaccessible to most. 
This is one reason that RMT has had little impact on practitioners even in 
its originating field of psychology (Boumans, 2016). Cliff (1992) wrote that 
“even quantitatively sophisticated areas of psychology behave as if abstract 
measurement theory did not exist” (p. 187). Michell (2008) wrote that 
measurement theory is “excluded from consideration in mainstream 
psychometrics” and “missing from the curriculum” (pp. 8-9). An evaluation 
of RMT is outside of the scope of this paper. 

 
Permissible Statistics 

 
Stevens’ clam that only some statistical operations are permissible, 

depending on the scale, has led to continuing debate. Critics took issue with 
the idea that either Stevens or empirics could create constraints in 
mathematics. Gaito (1980) wrote: 

In mathematical statistics literature one will not find scale properties as a 
requirement of the use of the various statistical procedures. This requirement 
was merely a figment of the imagination of a number of psychologists because 
of a confusion of measurement theory and statistical theory. Statistical 
procedures do not require specific scale properties. The assumptions for the 
use of statistical procedures can be clearly stated and are based on the 
mathematical aspects underlying the procedure. (p. 566) 

Anderson (1961, p. 309) argued that the F and t-tests can be applied to 
ordinal scale data, writing that “the validity of a statistical inference cannot 
depend on the type of measuring scale used.” Burke (1953, p. 73) wrote that 
“the use of the sample mean and standard deviation does no violence upon 
the data, whatever the properties of the measurement scale. Thus, the use 
of the usual statistical tests is limited only by the well-known statistical 
restrictions.” McRae (1988, p. 162) wrote, “Mathematical statistics is 
defined within the domain of numbers. Its operations and its results are 
confined to that domain. The validity of statistical results as numbers does 
not depend on any correspondence between the numbers and objects and 
events in the world.” Even Michell (1986), who was more sympathetic and 
presented a different argument supporting Stevens’ conclusions, called 
Stevens’ assertions about permissible statistics “high handed.”  

The debate about permissible statistics has often focused on the proper 
characterization of Likert items and Likert scales, proposed by Rensis 
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Likert, which are ubiquitous in the social sciences and were originally 
proposed to measure attitudes and perceptions (Likert, 1932). Likert items 
are survey questions in which respondents are asked to choose an answer 
from (typically five or seven) ordered responses. Each possible answer is 
numbered. Likert scales are derived by summing or averaging the answers 
to similar Likert items.  

Social scientists disagree about the scale of measurement of these data 
in theory and treat them differently in practice. Jamieson (2004) argued 
that Likert scales are ordinal data, yet are commonly treated as interval 
data. This matters because “if the wrong statistical technique is used, the 
researcher increases the chance of coming to the wrong conclusion about 
the significance (or otherwise) of his research” (Jamieson, 2004, p. 1217). 
Kero and Lee (2016) agreed, in their article titled “Likert is Pronounced 
‘LICK-urt’ not ‘LIE-kurt’ and the Data are Ordinal not Interval.” Carifio and 
Perla (2007, 2008) argued that while Likert items are ordinal, Likert scales 
are interval if not ratio data and that their interval nature is an empirical 
fact, an “emergent property” of the scale built from Likert items. They in 
turn cited Glass, Peckham, and Sanders (1972, p. 237), who argued that 
“[t]he relevant question is not whether [analysis of variance] assumptions 
are met exactly, but rather whether the plausible violations of the 
assumptions have serious consequences on the validity of probability 
statements based on the standard assumptions.” Norman (2010) agreed 
with Jamieson that Likert scales are ordinal, saying that the matter “does 
not take a lot of thought.” He nevertheless defends the calculation of 
“change scores” (measures of the difference in the value of a variable over 
time) for ordinal data, arguing, 

One of the beauties of statistical methods is that, although they often involve 
heroic assumptions about the data, it seems to matter very little even when 
those are violated. . . . If Jamieson and others are right and we cannot use 
parametric methods on Likert scale data, and we have to prove that our data 
are exactly normally distributed, then we can effectively trash about 75% of our 

research on educational, health status and quality of life assessment . . .. (p. 
627) 

Norman (2010) concludes that “[s]ince an ordinal distribution amounts to 
some kind of nonlinear relation between the number and the latent 
variable” then given that analysis of variance (ANOVA) is robust with 
respect to non-normality, it can be used with ordinal data (p. 627). 

The academic debate about permissible statistics is mirrored in a highly 
varied statistical practice. Social scientists often ignore Stevens’ equivocal 
limitation on permissible statistics, for example, by calculating the means 
of ordinal data. Likert scales are routinely calculated from Likert items and 
subjected to parametric statistical analysis. Even more frequently, social 
scientists do not specify the scale of data they are analyzing at all. Citing 
statistical textbooks, Jamieson cautions that the calculation of means and 
standard deviations are “inappropriate” for ordinal data: 
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However, these rules are commonly ignored by authors, including some who 
have published in Medical Education. For example, the authors of 2 recent 
papers had used Likert scales but described their data using means and 
standard deviations and performed parametric analyses such as ANOVA. This 
is consistent with Blaikie’s observation that it has become common practice to 
assume that Likert-type categories constitute interval-level measurement. 
Generally, it is not made clear by authors whether they are aware that some 
would regard this as illegitimate; no statement is made about an assumption of 
interval status for Likert data, and no argument made in support. All of which 
is very confusing for the novice in pedagogical research. What approach should 
one take when specialist texts say one thing, yet actual practice differs? 
(Jamieson, 2004, p. 1217)  

 
The Problem with the Scales of Measurement 

 
Physicists who held what Michell (1986) called the “classical” view of 

measurement saw measurement as the recording of empirical facts. By 
contrast, Stevens saw mathematics as analogy and “measurement” as 
mapping from empirical data to different types of number series based on 
the researcher’s ability to demonstrate the empirical qualities of their data. 
The researcher could then perform mathematical operations on the 
numbers and use the conclusions to draw empirically valid conclusions 
about the subject of study. 

Scales are possible in the first place only because there is a certain isomorphism 
between what we can do with the aspects of objects and the properties of the 
numeral series. . . . The isomorphism between these properties of the numeral 
series and certain empirical operations which we perform with objects permits 
the use of the series as a model to represent aspects of the empirical world. 
(Stevens, 1946, p. 677) 

Stevens had two objectives: to show that psychologists could measure 
their subjects of study and therefore that psychology was a science and to 
use mathematics to draw empirical conclusions. He attempted to expand 
the definition of “measurement,” but as a practical matter, what he sought 
was “mathematization”: “to reduce to mathematical form or subject to 
mathematical treatment” (Merriam-Webster, 2019). However, no 
distinction had yet been made between the two. Because physicists worked 
with properties that could be expressed in ratios, measurement was equated 
by both physicists and psychologists without discussion as mathematization 
to rational or real numbers.2  

To prevent researchers from conducting mathematical operations 
defined on the real numbers for data that did not evidence the mathematical 
properties of real numbers, Stevens created different types of scales and 

 
2 Although the discussion focused on whether quantities of attributes could be added or 
expressed as ratios, in practice mathematical operations were often used that are not 
defined on rational numbers, such as taking the square root of a number without 
considering whether it is a perfect square. 
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“permissible statistics.” He did not explicitly anchor his discussion in 
mathematics, instead presenting the limitations as fiat. He also 
equivocated, suggesting that these limitations were at the researcher’s 
discretion. For example, he argued that while taking the mean and standard 
deviation of ordinal scales should not be done “in strictest propriety” 
nevertheless “[i]n numerous instances it leads to fruitful results” (Stevens 
1946, p. 679). The degree of impropriety depended on the extent to which 
“successive intervals on the scale are unequal in size.”  

Researchers wrestled with the choice of using an ordinal scale, with 
information loss and a more limited ability to draw mathematical 
inferences, or using a ratio scale, creating a logical leap between the data 
and its mathematical representation and casting doubt on the validity of any 
empirical conclusions. As one statistics instructor blogged:  

All ordinal data are not the same. There is a continuum of “ordinality” if you 
like. . . . There are some instances of ordinal data which are pretty much 
nominal, with a little bit of order thrown in. . . .The mode is probably the only 
sensible summary value other than frequencies. . . . Then there are other 
instances of ordinal data for which it is reasonable to treat it as interval data 
and calculate the mean and median. It might even be supportable to use it in 
a correlation or regression. This should always be done with caution, and an 
awareness that the intervals are not equal. . . However, at the same time as 
saying, “you should never calculate the mean of ordinal data”, it would be 
worthwhile to point out that it is done all the time! (Petty, 2013) 

Both the creation of this fiat structure and Stevens’ departures from it 
set the stage for continuing controversy. However, aside from political 
reasons, there was no need for Stevens to invent a structure to account for 
the differences between the mathematical properties of the data and those 
of the real numbers.  Set theory was developed by Georg Cantor in the late 
1800s, and gradually became the basis for modern mathematics. With it 
came the notion of different sets with different properties, such as 
unordered sets, ordinal numbers, integers, rational numbers, and real 
numbers.3 Data can be mathematized to the appropriate set based on their 
empirically demonstrated mathematical properties, rather than to one of 
Stevens’ “levels of measurement.” In mathematics, operations are defined, 
not labeled as “permissible” by Stevens. If undefined, then they are 
mathematically meaningless. Whether mathematical conclusions in turn 
result in valid empirical conclusions depends both on the validity of the 
mapping operation and the soundness of the mathematical logic (Figure 1.)  

In this light, the academic discussion about permissible statistics 
referenced earlier is both right and wrong. The validity of statistical 
inference cannot and does not depend on what type of scale is used, because 
a scale is not a mathematical object. However, statistical tests may only be 
defined   for  certain  number  sets.     For example,   ordinals  do  not   have 

 
3 Readers interested in a mathematical introduction to naïve set theory are referred to 
Shen and Vereshchagin (2002). 
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intervals, and so it is mathematically meaningless to discuss the sizes of 
their intervals or to calculate their means. Moreover, errors of 
mathematization can ultimately undermine the validity of the final 
empirical conclusions. 
 
Figure 1. Empirical information about the subject of study is mapped to an 
analogous number set; mathematics is used to draw conclusions about the 
numbers; mathematical conclusions are used to draw empirical conclusions 
about the subject of study. The validity of the final empirical conclusions 
depends on correct mathematization of the subject of study and sound 
mathematical reasoning. 
 

 
Bad Mathematization 

 
When data are mathematized to sets that have different or additional 

properties, and mathematical operations that depend on those properties 
are carried out on those numbers, the results are mathematically valid but 
do not translate to valid empirical conclusions. Three examples of this 
confusion are offered: Stevens’ own inclusion of labeling as a form of 
measurement; Lord’s famous critique of Steven’s limits on permissible 
statistics, which focuses on the permissible mathematical operations for 
nominal numbers; and the current confusion about the treatment of Likert 
items. 
 
Labeling 
 

Consistent with his definition of measurement as “the assignment of 
numerals to objects or events according to a rule,” Stevens including 
labeling data using numerals as names as a form of measurement, even 
though he acknowledged that some would find it “absurd.” (Stevens 1946, 
p. 679) An example would be the assignment of numbers to highways or 
football players for ease of reference.  

It is possible to map members of an unordered set (“A”) to members of 
a set of numbers (“B”). However, this would not lead to useful empirical 

Information 
about subject 

of study

Data mapped 
to number set

Mathematical 
operations on 

numbers

Conclusions 
about subject 

of study
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conclusions about A. If B is also an unordered set, for example, a set of 
numerals that are simply graphic symbols, the same operations may be 
conducted equally easily on A as on B and there is no reason to manipulate 
B instead of manipulating A directly. It is just as easy to count the total 
number of highways as to count the total number of highway numerals. 
Steven’s permissible statistics for the nominal scale can be performed 
directly on A. Moreover, the use of a set of numerals as names or graphic 
symbols rather than as numbers may lead to honest errors by people who 
think they are intended to represent a number set. 

If B is some other type of number set, with mathematical properties that 
A does not have, mathematizing A to B is an error and the performance of 
mathematical operations on B that are not defined for A would not lead to 
valid empirical conclusions. For example, one could mathematize the set of 
household pets to real numbers, mapping the cat to “10” and the dog to “2.” 
It is possible to take the mean of the real numbers 10 and 2, and come to a 
conclusion about B, the set of numbers to which A is mapped, such as that 
the average of B is six. However, this mathematical conclusion does not lead 
to an empirical conclusion about A, the set of pets. A dog and a cat cannot 
be averaged, and the statement that the average of the household pets is six 
is a meaningless and arbitrary artifact of the researcher’s mapping choice; 
the researcher could as easily have named them “10” and “12.” To prevent 
this, calculation of means is not permitted for the nominal scale under 
Stevens’ framework. 

 
Football Numbers 
 

One of the most well-known critiques of Stevens’ scales is a highly cited 
1953 paper, “On the Statistical Treatment of Football Numbers,” by the 
psychometrician Frederic Lord (1953). The critique is flawed. Lord’s 
argument illustrates one or both of the above errors: treating numeric labels 
as numbers, or mathematizing an unordered group to a number set with 
different properties.  

Lord argued that, contrary to Stevens’ limits on permissible statistics, all 
statistical operations are permitted even on nominal numbers. To make his 
point, he tells a parable about a machine that dispenses numbers without 
replacement that are used to identify football players. The freshmen 
complain that their numbers are too low compared to the numbers given to 
the sophomores and that someone has tampered with the machine. The 
hero of the parable demonstrates that there is nothing wrong with the 
machine by calculating the critical ratio to evaluate the probability that the 
sample of freshman football numbers was randomly drawn. To calculate the 
critical ratio, the hero adds, multiplies, and even divides nominal numbers 
over the horrified gasp of the professor. Lord claims that the analysis 
demonstrates that the sum of a sample of football numbers “obeys the same 
laws of sampling as they would if they were real honest-to-God cardinal 
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numbers” because “the numbers don’t remember where they come from” 
(Lord, 1953, p. 751). 

The numbers may not know where they come from, but the researcher 
and statistician must know their properties. Lord does not specify what type 
of numbers are dispensed by the machine, but he performs operations on 
them as if they were randomly drawn, normally distributed real numbers. 
If the football numbers are of some other type—for example, if they are 
integers, for which division is defined differently, or numeric labels, not 
numbers—then the mathematical operations his hero attempts to perform 
are undefined in mathematics and so do not produce the results listed in the 
paper.  

Even if they are real numbers for which such operations are defined, the 
mathematical conclusions are about the numbers, not the football players. 
This is not evidence that one can perform such operations on an unordered 
set (that of football players); division of unordered sets is undefined in 
mathematics. Lord was correct that one can calculate critical ratios using 
nominal data, only if by “nominal data” he meant normally distributed, 
randomly drawn real numbers to which an unordered set has been mapped. 
Yet, most researchers would consider the “nominal data” to be the 
unordered set itself. 

A similar problem is presented when relationships of order are 
mathematized to real numbers and operations that are only appropriate for 
real numbers are performed on them. For example, imagine that there are 
two groups of people, Group A and Group B. Each group has five people in 
it with different weights, and they are assigned ordinal numbers according 
to weight, with 1 being the lightest and 5 being the heaviest. If the researcher 
then maps the ordinal numbers to real numbers and calculates means, the 
average of A and B is the same, three. However, this is not an average group 
weight, but an average of the real numbers to which the order numbers were 
mapped. It does not mean that the average weight of the two groups is the 
same. It does not provide any information about the weights of the two 
groups or translate into any empirical conclusions about group weight. 
Moreover, there are an infinite number of ways that these ordinals could be 
mapped to real numbers at researcher discretion as long as the order is 
preserved (for example, 1 is mapped to 100, 2 is mapped to 139, etc.), 
making the calculated mean a function of this arbitrary choice by the 
researcher. 
 
Likert Items and Scales 
 

Although most researchers do not need to be convinced that they should 
not attempt to calculate the averages of highways, cats, dogs, or football 



THOMAS 

88 
 

players, the same issues arise in the discussion about the treatment of Likert 
items and Likert scales.  

Multiple-choice questions can be used to collect data with different 
properties, including data that can be mathematized to unordered, ordinal, 
cardinal, or real number sets.4 Some members of the set of possible 
responses are selected and presented to the respondent to allow the 
respondent to choose. The respondent’s choices are hoped to provide 
information about the underlying subject of study. The respondent’s 
possible answers are labeled with numbers: the numbers one through five 
in the case of a five-option question. In some cases, mathematical 
operations are then performed on the answer numbers in order to draw 
empirical conclusions about the subject of study (Figure 2). Unfortunately, 
researchers rarely make explicit claims about the mathematical properties 
of their subject of study, provide evidence of those claims, or describe their 
mathematization of the answer numbers. 

For mathematical operations on the answer numbers to lead to 
conclusions about the subject of study that are empirically valid, the 
operations must depend only on mathematical properties that are 
evidenced by the original data. Because multiple-choice questions may be 
used to gather data about subjects of study with different mathematical 
properties, the appropriate mathematization of the answer numbers will 
vary with the empirically demonstrated mathematical properties of the 
subject of study. For example, if the data are members of an unordered set, 
treating the answer numbers as numbers is problematic because they are 
ordered.  
The first problem that gives rise to the confusion about Likert items and 
scales, originally designed to measure attitudes and perceptions, is that the 
mathematical properties of attitudes and perceptions were assumed in 
order to facilitate the use of mathematics, not empirically demonstrated.    
Thurstone and  Chave (1929) made  an  early  case  for the mathematization 
of attitudes. Like their contemporaries, they equated measurement with 
mathematization to real numbers and argued that attitudes could be 
measured in this way: 

When we discuss opinions, about prohibition for example, we quickly find that 
these opinions are multidimensional, that they cannot all be represented in a 
linear continuum. The various opinions cannot be completely described merely 
as "more" or "less." They scatter in many dimensions, but the very idea of 
measurement implies a linear continuum of some sort such as length, price, 
volume, weight, age. When the idea of measurement is applied to scholastic 
achievement, for example, it is necessary to force the qualitative variations into 
a scholastic linear scale of some kind. We judge in a similar way qualities such 

 
4 It is possible to use multiple-choice survey questions to gather data that is best 
mathematized as cardinal or real numbers, but in practice it is rare. It is easier to simply 
ask the respondent for the number rather than to tee up limited choices from which the 
respondent must select, and which may then be an approximation of the correct answer. 
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as mechanical skill, the excellence of handwriting, and the amount of a man's 
education, as though these traits were strung out along a single scale, although 
they are, of course, in reality scattered in many dimensions. As a matter of fact, 
we get along quite well with the concept of a linear scale in describing traits 
even so qualitative as education, social and economic status, or beauty. A scale 
or linear continuum is implied when we say that a man has more education 
than another, or that a woman is more beautiful than another, even though, if 
pressed, we admit that perhaps the pair involved in each of the comparisons 
have little in common. It is clear that the linear continuum which is implied in 
a "more and less" judgment may be conceptual, that it does not necessarily 
have the physical existence of a yardstick. 

And so it is also with attitudes. We do not hesitate to compare them by the 
"more and less'" type of judgment. We say about a man, for example, that he is 
more in favor of prohibition than some other, and the judgment conveys its 
meaning very well with the implication of a linear scale along which people or 
opinions might be allocated (Thurston & Chave, 1929, p. 10-11). 

 
Figure 2. Learning about attitudes through multiple-choice survey 
questions involves a double mapping: first, from attitudes to a set, and 
second, from answer numbers to a number set. Mathematics is used to draw 
conclusions about the answer numbers. The mathematical conclusions are 
used to draw empirical conclusions about attitudes. The empirical validity 
of the mathematical conclusions depends on the validity of both mappings 
and the soundness of the mathematical logic. 
 

 
 
Similarly, they argued for treating attitudes as unidimensional, described 
an attitude variable as “continuous” and provided an illustrative graph. 
(Thurston & Chave, 1929). The argument for ordinality is only lightly 
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evidenced, and no evidence was provided for the other claimed 
mathematical properties. 

Likert, writing in 1932, cited Thurstone and Chave when he assumed 
that attitudes were on a linear “attitude continuum,” which underpinned his 
explanation of how to build a scale to measure attitudes (Likert, 1932). 
Likert proposed to measure attitudes by respondent agreement with 
statements devised by the researcher to mark different points on the 
attitude continuum. The statements should be arranged in order from one 
end of the continuum to the other.  

Likert then explained that the statements should be mapped to answer 
numbers, one through five in the case of a five-option question, with the 
number “one” assigned to one end of the continuum, “three” to undecided 
and “five” to the other end of the continuum. Likert did not discuss the 
mathematical properties of these numbers explicitly; however, he 
recommended calculating the correlation coefficient of the answer numbers 
of each statement with those of the average score of the battery of 
statements to ensure that the statement was correctly numbered and 
offered a table as an example. He treated answer numbers as if they were 
also real numbers and the attitude continuum as if it were bounded.  

Whether the mathematical manipulation of answer numbers leads to 
valid empirical conclusions depends, among other things, on the validity of 
the original mathematization of attitudes and the subsequent 
mathematization of answer numbers. If attitude is ordinal,  answer 
numbers are mathematized as real numbers, and mathematical operations 
carried out that are only defined for real numbers and not ordinals, then the 
mathematical operations on the answer numbers have no empirical 
counterpart and do not provide a foundation for drawing empirical 
conclusions about attitudes.  

If attitudes and perceptions demonstrate the mathematical properties of 
real numbers, and are bounded, and if the statements offered in a Likert 
item correctly mark the end points and consistent intervals in an attitude 
continuum, then there are two possibilities. Answer numbers could be 
mathematized as ordinals, as the data have the mathematical properties of 
ordinals, although this results in information loss. Means and standard 
deviations could not be calculated as they are undefined. Alternately, 
answer numbers could be real, and the mapping from data to answer 
numbers is a rescaling. In this case, the answer numbers are analogous to 
the subject of study, the operations defined, and the mathematical 
conclusions would lead to valid empirical conclusions. 

This is ultimately an empirical question about the nature of attitudes. 
Revisiting the debate about the mathematical properties of Likert items and 
scales described earlier, the debate fails to address the mathematical 
properties of attitudes, on which the proper mathematization of answer 
numbers depends. In fact, it is not even clear if attitudes are ordered. There 
is a continuing debate in psychology and economics about whether  
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evidence shows that preferences demonstrate transitivity (if a > b and b > 
c, then a > c) (see, e.g., Regenwetter & Dana, 2011; Bleichrodt & Wakker, 
2015), a property of both the ordinal and real numbers. Johnson (1936) 
raised early concerns about whether attitudes are dynamically stable.  

Whether various statistical operations on Likert items and scales are 
defined then depends on how the answer numbers were mathematized. The 
performance of operations not defined in mathematics is not mathematics 
and provides no basis for drawing empirical conclusions. 

 
Implications for Quantitative Social Science and Data Science 

 
Stevens’ work helped open the door to the use of mathematics to draw 

empirical conclusions about data that did not have the properties of real 
numbers. However, it was a product of its time. Stevens built a rickety 
bridge between the empirical and mathematical worlds and between his 
data and real numbers, inventing a typology of scales or “levels of 
measurement.” To make his invention work, he offered limitations on the 
mathematical operations for each scale, but did not explicitly anchor these 
limitations with reference to mathematics. Moreover, he suggested 
violating them, which indicated that they were fiat. The flaws in this 
framework continue to lead to the production of academic work that is not 
anchored in either the epistemology of science or the logic of mathematics.  

Putting the political necessity of establishing that psychology could 
“measure” aside, Stevens’ enterprise is better described as 
“mathematization” than “measurement.” Its purpose was to use 
mathematics to draw empirical conclusions. It would be more robust if, 
instead of representing data as “scales” of his own invention, it instead 
represented them with sets, which are mathematical objects. 

If data are mathematized to sets with different or additional 
mathematical properties, and mathematical operations are performed that 
depend on those properties, then mathematical conclusions will not yield 
valid empirical conclusions. However, researchers often begin data analysis 
by performing mathematical operations defined for the real numbers 
without investigating the mathematical properties of the subject of study, 
stating their claims regarding those properties, or providing any evidence 
of those claims.  

The failure to recognize or test such assumptions in psychometrics led 
Michell (2008) to ask if psychometrics is “pathological science,” but the 
problem is not limited to psychometrics. In political science and economics, 
many researchers seek to measure social phenomena without examining the 
mathematical properties of the subject of study. The publication of data sets 
measuring human rights, corruption, rule of law, democracy, and 
governance has in turn given rise to large literatures of regression analysis 
that seek to discover relationships between these and other variables of 
interest. Such metrics are also used in policymaking. All of these rest on the 



THOMAS 

92 
 

unexamined assumption that the underlying phenomena has the necessary 
properties to be mathematized as real numbers. 

The problem is likely to worsen with the advent of data science, as data 
scientists conduct computational analysis but are often not involved in data 
collection or decisions about data representation. Not only do they lack 
access to information about the empirical mathematical properties of the 
subject of study, the evidence supporting mathematization, and the number 
set used, but the programming languages they use may or may not permit 
classification of data by number set or enforce limitations on mathematical 
operations performed on data based on type. This also encourages the 
treatment of all numbers as real, reducing the validity of empirical 
conclusions from mathematical treatment.  

Proper mathematization matters for the validity of empirical claims. 
Accordingly: 

 
1. Researchers should conduct experimental studies to determine if the 

subject of their study demonstrates mathematical properties such as 
being well-ordered, transitive, countable, additive, divisible, or 
continuous; whether it demonstrates closure, commutativity, 
associativity, or distributivity. The literature on the transitivity of 
preferences is an example of empirical inquiry regarding one such 
characteristic. This work is even more strongly needed for variables 
that are not directly observable, such as attitudes or constructs. 

2. Researchers should make their claims about the mathematical 
properties of the subject of study explicit and support them with 
empirical evidence.  

3. Researchers should make their decisions about mathematization 
explicit and explain and defend their choices. These are essential 
premises on which the validity of their results rests. 

4. Researchers should mathematize to an analogous number set to 
ensure the validity of the final empirical conclusion. An analogous 
number set has only mathematical properties that are demonstrated 
by the subject of study.  

5. Once the data are mathematized to the relevant number set, 
mathematics determines what operations are defined for that 
number set. Only defined operations may be conducted, as 
undefined operations are meaningless in mathematics and do not 
lead to mathematical conclusions.  

One way to see these recommendations is as a prohibition on pseudo-
mathematics and a call for more rigor in quantitative social science. But 
another way is to see them is as a proposal for the opening of programs of 
empirical study into the mathematical properties of the subjects of research 
and the exploration of the utility of other number sets. This is fully 
consistent with Stevens’ original vision of using mathematics as a modeling 
tool. 
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