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Neglecting to measure autocorrelation in longitudinal research methods such as Repeated 
Measures (RM) ANOVA produces invalid results. Using simulated time series data 
varying on autocorrelation, this paper compares the performance of repeated measures 
analysis of variance (RM ANOVA) to interrupted time series autoregressive integrated 
moving average (ITS ARIMA) models, which explicitly model autocorrelation. Results 
show that the number of RM ANOVA signaling an intervention effect increase as 
autocorrelation increases whereas this relationship is opposite using ITS ARIMA. This 
calls the use of RM ANOVA for longitudinal educational research into question as well as 
past scientific results that used this method, exhorting educational researchers to 
investigate the use of ITS ARIMA. 
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 When studying the efficacy of an educational intervention, it is 
important to incorporate the aspect of time. Such longitudinal research 
designs show how a measured phenomenon changes due to an 
intervention that is hypothesized to enhance learning. Generally, a 
longitudinal research design has the advantage of increased statistical 
power, which reduces the probability of erroneously failing to reject a false 
null hypothesis, called a Type-II error (Shadish, Cook, & Campbell, 2001, 
p. 267). It is well established that researchers ought to consider the 
statistical power of their analyses (Cohen, 1962), which increase statistical 
conclusion validity of an intervention (Shadish, Cook, & Campbell, 2001, 
p. 45). Thus, the allure of longitudinal designs is understandable. 
Moreover, making an inference about behavior from just one pre-test and 
post-test lacks internal validity in the form of the testing effect and the 
instrumentation effect. In other words, if an instrument is prone to low 
reliability (instrumentation effect) or if a test-taker benefits from mere 
familiarity with the instrument (testing effect), then these effects will be 
more apparent in a repeated measures context (Shadish, Cook, & 
Campbell, 2001, p. 60). Overall, incorporating the aspect of time increases 
the internal validity and statistical conclusion validity of a research study.  

Using a traditional repeated measures analysis of variance (RM 
ANOVA), the change in a measured phenomenon among a sample of 
individuals can be split between pre-intervention and post-intervention 
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phases using multiple pre-tests and post-tests. However, longitudinal data 
analysis is complicated because the past is a good predictor of the present 
and future. For example, an individual with a high score in math aptitude 
will likely have a high score in math aptitude one week later. The 
relationship between a measured phenomenon and itself in the past is 
called autocorrelation and it is a violation of the assumption of 
independence. 

Autocorrelation is very common in longitudinal data analysis, but 
Scheffé (1959) shows that there is an increase in type-I error rate when 
observations are autocorrelated because autocorrelation violates the 
assumption of independence. However, Scheffé’s proof is dense and 
mathematically esoteric. Many if not all applied educational researchers 
would not be able to critically examine this mathematical proof and, if 
anything, accept it on the basis of an argument from authority. Therefore, 
as an alternative to accepting Scheffe’s proof on authority alone, this study 
tests Scheffé’s proof using simulated data at levels of autocorrelation 
ranging from -0.4 to 0.4 in steps of 0.1. This simulated data is analyzed 
using RM ANOVA, which does not control for autocorrelation, and 
interrupted time series autoregressive integrated moving average (ITS 
ARIMA), which does control for autocorrelation. Thus, the hypothesis of 
this study is that as the autocorrelation of the simulated samples increase, 
RM ANOVA will identify a higher proportion of statistically significant 
differences than ITS ARIMA identifies. 

 
Important Prior Knowledge 
 

RM ANOVA. The procedure for conducting an RM ANOVA is similar 
to that of other statistical tests: state a hypothesis, set an alpha level of 
statistical significance, compute the test statistic, and interpret results. RM 
ANOVA experiments require random sampling, a normally distributed 
outcome variable in the population, homogeneity of variance, and equal 
correlation coefficients between measurement pairs in the population 
(Hinkle, Wiersma, & Jurs, 2003, pp. 357-363). Balanced design and time-
invariant covariates are also requirements of RM ANOVA (Kwok, 
Underhill, Luo, Elliott, & Yoon, 2008). 

The limitations of an RM ANOVA are well-established and stem from 
the requirements of the analysis. Random sampling is common to all 
experimental designs, but some quasi-experimental designs control 
enough for threats to validity such that an RM ANOVA results are 
acceptable (Shadish, Cook, & Campbell, 2001). A normally distributed 
outcome variable in the population is common to all analyses that fall 
under the general linear model, but if this assumption is not met, then the 
outcome variable can be transformed, perhaps using a Box-Cox 
Transformation (Osborne, 2013).   Homogeneity  of  variance  is  a testable  
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assumption that when violated there are alternative statistical tests that 
still use an RM ANOVA design. Equal correlation coefficients between 
measurement pairs in the population, called sphericity, is also a testable 
assumption with corrections, namely Greenhouse-Geisser’s and Huynh-
Feldt’s (Hinkle, Wiersma, & Jurs, 2003). A balanced design in RM ANOVA 
requires that all individuals in the study must have the same number of 
assessments and the time between these assessments must be equal. If an 
RM ANOVA is unbalanced, whereby some individuals have more 
assessments than others, these extra measurements must be dropped from 
the analysis. Finally, RM ANOVA requires time-invariant covariates, 
which are variables that do not change over time, such as place of birth, 
race, or sex, but it cannot accept time-variant covariates, such as level of 
education, marital status, or place of residence (Kwok et al, 2008). 

Autocorrelation. Autocorrelation is similar to other correlation 
coefficients, such as Pearson’s r, but it is different in two ways. First, 
Pearson’s r finds the direction and magnitude of similarity between two 
different observed variables whereas autocorrelation finds the similarity of 
an observed variable with itself in the past. Second, for any one variable, 
there are 𝑛 − 1 autocorrelation coefficients because that is how many ways 
in which pairs of observations can be combined. 

The pairs that the autocorrelation coefficient compares is defined by 
the ‘lag,’ 𝑘, of autocorrelation, which is how far in the past an observation 
is correlated with itself. The symbol for the autocorrelation coefficient is 𝑟𝑘 
and can be calculated using (1). 

 
 

                               𝑟𝑘 =
∑ (𝑦𝑘+𝑡−𝑦̅)(𝑦𝑡−𝑦̅)𝑇

𝑡=1

∑ (𝑦𝑡−𝑦̅)2𝑇
𝑡=1

        (1) 

 
 

For example, in a longitudinal data set 𝑥 = {1,5,9,10,11}, when 𝑘 = 1, 
autocorrelation measures the magnitude of similarity between the pairs (1, 
5), (5, 9), (9, 10), and (10, 11), and 𝑟1 = 0.37; when 𝑘 = 2, autocorrelation 
measures the magnitude of similarity between the pairs (1, 9), (5, 10), and 
(9, 11) and 𝑟2 = −.15; 𝑘 = 5 is 𝑛𝑢𝑙𝑙 because 5 > 𝑛𝑥 − 1. (Glass, Wilson, & 
Gottman, 1975/2008). Because there are 𝑛 − 1  autocorrelation 
coefficients, the autocorrelation of a set of data is usually reported in a 
type of figure called a correlogram. The correlogram for the heuristic data 
set 𝑥 appears in Figure 1. 
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Figure 1. A correlogram for the heuristic data set 𝑥. The blue dotted line 
represents the critical value for a statistically significant autocorrelation 
coefficient (Box, Jenkins, & Reinsel, 1994; Glass et al., 1975). 
 

 
 

ITS ARIMA. ARIMA models are part of the larger generalized linear 
model framework. Unlike RM ANOVA, ITS ARIMA explicitly models 
autocorrelation by including an autoregressive coefficient, 𝜙, where 𝜙 is a 
function of 𝑟𝑘. In addition to autoregression, ARIMA models also include 
an order of differencing and an order of moving averages, usually 
summarized in the form 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) , where 𝑝  is the order of 
autoregression, 𝑑 is the order of differencing, and 𝑞 is the order of moving 
averages (Glass, Wilson, & Gottman, 1975/2008). 

ARIMA models can be used to show a trend over time, or they can be 
used to establish evidence for an intervention effect.  Such an analysis uses 
a pre-intervention level, 𝐿, and a post-intervention level, 𝐿 + 𝛿, and these 
levels are compared using a t-test (Glass, Wilson, & Gottman, 1975/2008, 
pp. 119-150). 

Like all statistical models, ITS ARIMA has assumptions, principally 
homogeneity of variance and homogeneity of mean, together called the 
assumption of stationarity. This assumption is testable using the 
Augmented Dickey-Fuller test or the Phillips-Perron test, part of a class of 
statistical tests called unit root tests, where the null hypothesis is that 
there is a unit root present in the time series. If there is a failure to reject 
this null hypothesis, then the observations are not stationary and an order 
of differencing is introduced. 
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Data that follow a first order autoregressive model would be 
symbolized as 𝐴𝑅𝐼𝑀𝐴(1,0,0) and can be expressed in matrix form such 
that 𝑦𝑡 = 𝑋𝑏 + 𝑎𝑡 as in (2), where the double subscript 𝑘 is the 𝑘𝑡ℎ phase of 
the quasi-experiment (Glass, Wilson, & Gottman, 1975/2008, pp. 128-
133). 

 

[
 
 
 
 
 
 
 
 

𝑦1

𝑦2

⋮
𝑦𝑛𝑘

− − −
𝑦𝑛𝑘+1

𝑦𝑛𝑘+2

⋮
𝑦𝑁 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

1 0
1 − 𝜙 0

⋮ ⋮
1 − 𝜙 0
− − − − − −
1 − 𝜙 1
1 − 𝜙 1 − 𝜙

⋮ ⋮
1 − 𝜙 1 − 𝜙]

 
 
 
 
 
 
 
 

[
𝐿
𝛿
] +

[
 
 
 
 
 
 
 
 

𝑎1

𝑎2

⋮
𝑎𝑛𝑘

− − −
𝑎𝑛𝑘+1

𝑎𝑛𝑘+2

⋮
𝑎𝑁 ]

 
 
 
 
 
 
 
 

 

 
L and 𝛿 have standard error  

𝑠𝑎
2 =

𝑎𝑇𝑎

𝑁 − 2
 

 
Moreover, L and 𝛿 are distributed on t with df=N-2: 
 

𝐿̂ − 𝐿

𝑠𝑎√𝑐11
~𝑡𝑁−2 

 

𝛿 − 𝛿

𝑠𝑎√𝑐22
~𝑡𝑁−2 

where 
𝑐 = (𝑋𝑇𝑋)−1 

 
 
Response to Intervention 
 
 One way to measure the efficacy of an educational intervention is with 
the Response to Intervention (RTI) protocol. In RTI, a sample of at-risk 
students is identified. Then, these students are monitored for a relatively 
short period using a standardized measurement. After this baseline phase, 
an intervention is implemented, such as a multi-tiered instructional 
approach. The students’ progress is then measured in a follow-up phase. 
The RTI protocol reduces educational expenditures through a more valid 
process of labelling students as learning disabled (LD) and it helps to 
address the IQ-achievement discrepancy (Fuchs & Fuchs, 2006).   
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Method 
 
Sample Simulation  
 

An RTI scenario was simulated. The number of observations was set to 
90 in the pre-intervention phase and 90 in the post-intervention phase. 
This would approximate a one semester pre-intervention phase and a one 
semester post-intervention phase (Jimerson, Burns, and VanDerHeyden, 
2015). 

The R package forecast was used to simulate this data. Using the 
arima.sim function, data sets were simulated for 66 participants over 180 
observations at varying levels of 𝜙, ranging from −0.4 to 0.4 in steps of 0.1. 
All data were screened to ensure they followed an 𝐴𝑅𝐼𝑀𝐴 (1,0,0) model. 
This method was replicated 100 times. These data allowed for the analysis 
of 900 RM ANOVA experiments, but because ITS ARIMA is suited for 
single-subject research designs, the same data allowed for the analysis of 
59,400 quasi-experiments. To the best of my knowledge, there is no 
general implementation of ITS ARIMA quasi-experiments in R. Testing 
the intervention effect in an ARIMA (1,0,0) is different from testing the 
intervention effect in ARIMA (2,0,0), ARIMA (1,0,1), or any other 
combination of autoregression, integration, or moving average. Thus, I 
created a function to test for the intervention effect in R based on the 
matrix algebra recreated above, as originally reported by Glass, Wilson, & 
Gottman (1975/2008). R syntax for this simulation, including testing for 
the intervention effect, is available upon request. 

 
Descriptive and Inferential Statistics 
 

Although RM ANOVA intervention effects can be analyzed using a 
Cohen’s 𝑑 effect size, there is no such effect size measurement for ITS 
ARIMA. Instead, this study uses F-tests to analyze RM ANOVA results and 
t-tests to analyze ITS ARIMA (Glass, Wilson, & Gottman, 1975/2008; 
Hinkle, Wiersma, & Jurs, 2003). A statistically significant result is defined 
with 𝛼𝑐𝑟𝑖𝑡 = 0.05. Pearson’s r is used to analyze the relationship between 
statistically significant results and the level of 𝜙. Because the only variable 
in the analyses is the level of 𝜙 , a simple regression does not add 
information, for in a simple regression 𝛽 = 𝑟 and 𝑅2 = 𝑟2. 

 
Results 

 
 When analyzing the simulated data using RM ANOVA there was an 
average of 6.56% (𝑆𝐷 = 5.85%) statistically significant results across levels 
of 𝜙 and an average of 44.47% (𝑆𝐷 = 0.03%) statistically significant ITS 
ARIMA quasi-experiments (Tables 1 and 2).  The number of statistically  
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significant results according to RM ANOVA was strongly positively 
correlated with the level of 𝜙 , 
𝑟 = 0.96, 𝑡(7) = 10, 𝑝 < 0.01,95% 𝐶𝐼[0.955,0.965] . This relationship was 
opposite with ITS ARIMA, where the number of statistically significant 
results was strongly negatively correlated with levels of 𝜙 , 
𝑟 = −0.92, 𝑡(7) = −6.28, 𝑝 < 0.01,95% 𝐶𝐼[−0.919,−0.921]. Thus, there is a 
positive relationship between the statistically significant results identified 
by RM ANOVA and the level of  𝜙 and the 95% confidence intervals of the 
two correlation coefficients do not overlap. 
 
Table 1 
Descriptive Statistics for Statistically Significant RM ANOVA Experiments 

Level of 
𝜙 

Statistically Significant Results 
(n) 

Statistically Significant Results 
(%) 

 
SD 

-0.4 0   0%  0% 
-0.3 2   2% 14% 
-0.2 1   1% 10% 
-0.1 2   2% 14% 
  0 6   6% 24% 
0.1 8   8% 27% 
0.2 10 10% 30% 
0.3 14 14% 35% 
0.4 16 16% 30% 
 
 

Table 2 
Descriptive Statistics for Statistically Significant ITS ARIMA Quasi-
Experiments 

Level of 
𝜙 

Statistically Significant Results 
(n) 

Statistically Significant Results 
(%) 

 
SD 

-0.4 3166 47.97% 50% 
-0.3 3072 46.55% 50% 
-0.2 3056 46.30% 50% 
-0.1 3109 47.11% 50% 
  0 3083 46.71% 50% 
0.1 2914 44.15% 50% 
0.2 2798 42.39% 49% 
0.3 2670 40.45% 49% 
0.4 2550 38.64% 48% 

 
 

Discussion 
 

 The number of statistically significant ITS ARIMA was much higher 
than those of the RM ANOVA. This may seem contradictory to the 
hypothesis that RM ANOVA produce more statistically significant results 
than ITS ARIMA. However, an important pattern emerges from Table A2. 
Notice that the number of statistically significant results using ITS ARIMA 
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across replications and across levels of 𝜙 has a small range, from 38% to 
48%, and small range of variances. These variances were consistent, 
averaging 49% with a standard deviation of less than 1%. The large 
fluctuation around the number of statistically significant results is 
explained by the method of randomly generating autocorrelated data. In 
other words, when using ITS ARIMA, there was somewhere between 0% 
and 100% statistically significant results, which is consistent with the 
random chance of simulated data. For RM ANOVA though, the range of 
statistically significant results was larger, from 0% to 16%, and larger 
range of variances. These variances grew as the level of 𝜙 increased.  
 The positive correlation between levels of  𝜙 and number of statistically 
significant results for RM ANOVA is expected. Scheffe’s proof shows that 
as autocorrelation increases, the number of type-I errors will also increase. 
However, the negative relationship between levels of 𝜙  and number of 
statistically significant results in ITS ARIMA is unexpected. This 
relationship means that there are more type-I errors in ITS ARIMA at 
lower levels of autocorrelation than at higher levels of autocorrelation. 
This highlights the fact that ITS ARIMA is not infallible. Thus, as in any 
analytical decision, the researcher ought to justify their use of analysis. 
Specifically, these results show that if the researcher is analyzing 
longitudinal data, before choosing either RM ANOVA or ITS ARIMA 
researchers must examine the level of autocorrelation. If no 
autocorrelation is present in the longitudinal data, then an RM ANOVA 
would have lower type-I error than ITS ARIMA. However, in the presence 
of autocorrelation, it is best practice to choose ITS ARIMA over RM 
ANOVA. 
 
Future Research 
 
 Since the inception of the ANOVA framework at the turn of the 20th 
century many advances have been made. For example, we know that all 
ANOVA-type inferential statistics can be modelled in terms of regression 
(Cohen, 1968) and that most statistical analyses can be modelled using 
structural equation models if just the covariance matrix is available 
(Thompson, 2015; Zientek & Thompson, 2009). There are yet more 
advances to be made in understanding the general linear model (GLM) 
and generalizations of the GLM, of which ITS ARIMA is an example. 

In comparing RM ANOVA to ITS ARIMA, just one viable alternative to 
the older RM ANOVA framework was considered. In addition to ITS 
ARIMA, which does have its disadvantages (Glass, Wilson, & Gottman, 
1978/2005), there are other alternatives, including hierarchical linear 
models with autoregressive level-I error, called an HLM with AR(1) 
covariance structure, (Kwok, Underhill, Luo, Elliott & Yoon, 2008; 
Raudenbush & Bryk, 2002) or autoregressive latent trajectories (Bollen & 
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Curran, 2004), called ALT. ALT is more promising than HLM with AR(1) 
covariance structure because, like ITS ARIMA, it directly models the 
autocorrelation of a series rather than modelling the autocorrelation of 
error. 

 
Limitations 
 
 This study used a large number of observations in order to ensure 
proper estimation of the AR parameter. Such a large number of 
observations is uncommon in educational research. However, the inflation 
of type-I error is a constant for any “large N” (Scheffé, 1959). The problem 
is that the estimated AR parameter is uncertain as the number of 
observations decreases and may not be statistically significantly different 
from zero. Future research may replicate this study but instead iterate the 
number of observations in addition to iterating levels of 𝜙. Additionally, it 
may be of analytical importance that there were 59,400 ITS ARIMA quasi-
experiments versus 900 RM ANOVA experiments. Future research should 
disentangle this issue, perhaps through bootstrapped sampling of RM 
ANOVA experiments and ITS ARIMA quasi-experiments to achieve equal 
groups.  
 

Conclusions 
 
 The case against using RM ANOVA for certain cases of longitudinal 
research is strong. This study shows that RM ANOVA have inflated type-I 
error due to autocorrelation. However, the general ANOVA framework is 
still very common and many researchers feel comfortable using this 
framework. Thus, educational researchers who feel most content under 
the ANOVA framework must at least test for autocorrelation in 
longitudinal studies and if autocorrelation is present, this must be cited as 
a limitation in their published research. On the other hand, the 
comfortable researcher could consider learning, practicing, and mastering 
the use of models that control for autocorrelation, such as ITS ARIMA, 
HLM with AR(1) covariance structure, or ALT. Considering these 
alternatives to RM ANOVA will advance educational research. 
 
 

Author Note: Jay S. Raadt, University of North Texas, Department of 
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