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The present paper argues for teaching statistics and psychometric theory using the GLM as a 
unifying conceptual framework. This helps students understand what analyses have in 
common, and also provides a firm grounding for understanding that more general cases of 
the GLM (canonical correlation analysis and SEM) can be interpreted with the same rubric 
used throughout the GLM. And this approach also helps students better understand analyses 
that are not part of the GLM, such as predictive discriminant analysis (PDA). The approach 
helps students understand that all GLM analyses (a) are correlational, and thus are all 
susceptible to sampling error, (b) can yield r2-type effect sizes, and (c) use weights applied to 
measured variables to estimate the latent variables really of primary interest. 
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 In a very influential APA presidential address in the late 1950s, Lee 
Cronbach advocated greater use of aptitude-treatment interaction designs, 
and effectively decried the then common misconception that statistics could 
be conceptualized as fitting within two classes: experimental statistics and 
correlational statistics. But not much happened with respect to how 
researchers conceptualized and taught statistics and psychometrics. 
 Then, in 1968, Cohen published a seminal article that was almost as 
important as his 1994 article, "The Earth is round (p<.05)." In the 1968 
article, Cohen said, although he thought most statisticians would find his 
argument obvious, most psychologists at the time on the other hand had no 
idea that regression subsumed ANOVA and other univariate analyses as 
special cases. Thus, regression is the univariate general linear model (GLM). 
He argued that the GLM was important conceptually, but also that very 
important advantages could be realized by using regression to conduct many 
univariate analyses. 
 Subsequently, Knapp (1978) showed that canonical correlation analysis 
(CCA; see Thompson, 1984, 2000) was the multivariate GLM, subsuming in 
addition to other multivariate methods (e.g., Hotelling T2, descriptive 
discriminant analysis [but not predictive discriminant analysis], and 
MANOVA and MANCOVA) univariate regression and the other univariate 
parametric methods. Finally, Bagozzi, Fornell, and Larcker (1981; also see 
Fan, 1997) showed that structural equation modeling (SEM) was the most 
general case of the GLM. 
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 A virtual regression-discontinuity study of the influence of Cohen's article 
shows that the field changed dramatically following Cohen's (1968) 
publication. Studies by Edgington (1964, 1974) covering several decades 
showed that prior to the 1968 article around 2/3rds to 3/4ths of published 
articles used ANOVAs. Similar studies after the 1968 article showed a large 
drop in the use of ANOVAs (Elmore & Woehlke, 1988; Goodwin & Goodwin, 
1985; Kieffer, Reese & Thompson, 2001; Willson, 1980). 
 The present paper argues for teaching statistics and psychometric theory 
using the GLM as a unifying conceptual framework. This helps students 
understand what analyses have in common, and also provides a firm 
grounding for understanding that more general cases of the GLM (canonical 
correlation analysis and SEM) can be interpreted with the same rubric used 
throughout the GLM. And this approach also helps students better 
understand analyses that are not part of the GLM, such as predictive 
discriminant analysis (PDA). The approach helps students understand that 
all GLM analyses (a) are correlational, and thus are all susceptible to 
sampling error, (b) can yield r2-type effect sizes, and (c) use weights applied 
to measured variables to estimate the latent variables really of primary 
interest. 
 

More on Defining the GLM 
 
 The General Linear Model is the concept that "all analytic methods are 
correlational ... and yield variance-accounted-for effect sizes analogous to 
(e.g., R2, η2, ω2)" (Thompson, 2000, p. 263). As Graham (2008) explained, 
 

The vast majority of parametric statistical procedures in common use are part of 
[a single analytic family called] the General Linear Model (GLM), including the t 
test, analysis of variance (ANOVA), multiple regression, descriptive discriminant 
analysis (DDA), multivariate analysis of variance (MANOVA), canonical 
correlation analysis (CCA), and structural equation modeling (SEM). Moreover, 
these procedures are hierarchical [italics added], in that some procedures are 
special cases of others. (p. 485) 
 

 Figure 1 presents a conceptual map of the commonly used statistical 
analyses falling within the General Linear Model. As noted previously, 
predictive discriminant analysis (PDA), unlike descriptive discriminant 
analysis (DDA), is not part of the GLM (Huberty, 1994). It can also be shown 
that the mathematics of factor analysis are used to compute the 
multiplicative weights applied to the measured variables, either explicitly or 
implicitly, in all analyses throughout the GLM. 
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Figure 1. Conceptual Map of the General Linear Model 
 

 
 

Note.  Descriptive discriminant analysis (DDA) is part of the general linear model, 
but predictive discriminant analysis (PDA) is not part of the GLM. "SEM" = 
structural equation modeling; "CCA" = canonical correlation analysis; “T-squared” = 
Hotelling's T2, a multivariate extension of the t-test to multiple dependent variables.  
  

 A very powerful way to prove to students that CCA subsumes other 
multivariate and univariate parametric methods is to use "proof by SPSS." 
That is, some students assume that SPSS was written by God, and that 
therefore anything on an SPSS output must be infallibly true. Here I use the 
Appendix A heuristic data and the Appendix B SPSS syntax to perform a 
couple of these proofs via SPSS. 
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CCA Subsumes Regression as a Special Case 
 
 Figure 2 presents a cut-and-paste copy out of an SPSS output for a 
regression analysis predicting IQ scores with predictors X1, X2, and X3. 
Figure 3 presents a cut-and-paste copy out of an SPSS output for a CCA with 
the same measured variables. Note that the regression R2 = .04106 equals 
the CCA RC = .041. 
 
Figure 2. Cut-and-Paste Copy of SPSS (version 6) Output Regression with IQ 
as Outcome Variable and  Variables X1, X2 and X3 as Predictors 
 

* * * *   M U L T I P L E   R E G R E S S I O N   * * * * 

 

Listwise Deletion of Missing Data 

 

Equation Number 1    Dependent Variable..   IQ 

 

Block Number  1.  Method:  Enter      X1       X2       X3 

 

Variable(s) Entered on Step Number  1..   X3 

                                    2..    X2 

                                    3..    X1 

 

Multiple R         .20263   Analysis of Variance 

R Square          .04106                     DF   Sum of Squares   Mean Square 

Adjusted R Square   -.16443   Regression           3         17.42991       5.80997 

Standard Error      5.39226   Residual            14        407.07009      29.07644 

 

                         F =        .19982       Signif F =  .8948 

 

------------------ Variables in the Equation ------------------ 

 

Variable              B        SE B       Beta         T  Sig T 

 

X1              .029676     .047711    .178198      .622  .5439 

X2              .016907     .051648    .089691      .327  .7482 

X3              .016575     .046738    .100762      .355  .7281 

(Constant)    99.489958    4.497892               22.119  .0000 

  

 
 
Figure 3. Cut-and-Paste Copy of SPSS (version 6) Output CCA with IQ as 
Predictor Variable and Variables X1, X2 and X3 as Outcomes 
  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 Eigenvalues and Canonical Correlations 

 

Root No.    Eigenvalue   Pct.     Cum. Pct.  Canon Cor.     Sq. Cor 

    1          .043     100.000    100.000     .203           .041 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 Standardized canonical coefficients for DEPENDENT variables 

           Function No. 

 

 Variable            1 

 X1              -.879 

 X2              -.443 

 X3              -.497 
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 However, at first glance the regression beta weights do not appear to 
match the CCA standardized function coefficients for the parallel analysis. 
First, the CCA function coefficients each have a different sign than the three 
regression beta weights! But the scaling direction of equations is purely 
arbitrary, and any researcher can at will reverse all the signs in an equation 
within the GLM (see Thompson, 2004, pp. 96-97). This is the equivalent of 
the arbitrary choice of whether to score a test by counting number of right 
answers versus number of wrong answers. 
 Second, the scaling of the regression beta weights and the CCA function 
coefficients is different. Table 1 illustrates how the two sets of weights can be 
converted into each other’s metrics. 
 
Table 1 
Converting Beta Weights into CCA Function Coefficients, and Vice Versa 
Variable Beta/RC Function Coefs. R 
X1 0.178198 / 0.203 = 0.879 *  0.20263 
X2 0.089691 / 0.203 = 0.443 *  0.20263 
X3 0.100762 / 0.203 = 0.497 *  0.20263 
 
CCA Subsumes Multi-Way ANOVA as a Special Case 
 
 Figure 4 presents a cut-and-paste copy out of an SPSS output for an 
ANOVA summary table for an analysis into IQ as the dependent variable in a 
two-way factorial ANOVA. Conducting the parallel ANOVA using CCA is a bit  
  
Figure 4. Cut-and-Paste Copy of SPSS (version 6) Output ANOVA with IQ as 
Outcome Variable and Variables X1, X2 and X3 as Predictor Variables 
 

* * *  A N A L Y S I S   O F   V A R I A N C E  * * * 

 

                 IQ 

            by   EXP_GRP 

                 GENDER 

 

                 UNIQUE sums of squares 

                 All effects entered simultaneously 

 

                         Sum of                 Mean             Sig 

Source of Variation               Squares     DF        Square       F    of F 

 

Main Effects                      412.500      3       137.500   137.500  .000 

   EXP_GRP                        300.000      2       150.000   150.000  .000 

   GENDER                         112.500      1       112.500   112.500  .000 

2-Way Interactions                   .000      2          .000      .000  1.00 

   EXP_GRP  GENDER                   .000      2          .000      .000  1.00 

Explained                         412.500      5        82.500    82.500  .000 

Residual                           12.000     12         1.000 

Total                             424.500     17        24.971 
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tedious, but otherwise is not problematic. First, create orthogonal contrasts 

using conventional methods explained in various textbooks (e.g., Thompson, 

2006). Next, run a CCA model using all the contrast variables. Then run CCA 

models dropping in turn the contrast variables for the three omnibus effects. 

Figure 5 presents cut-and-paste copies out of an SPSS output for these 

analyses. 

Figure 5. Cut-and-Paste Copy of SPSS (version 6) Output CCAs with IQ as IQ 

as Outcome Variable and Variables X1, X2 and X3 as Predictor Variables. 

 
CCA Model #1 with All Five Orthogonal Contrasts Entered 

   EFFECT .. WITHIN CELLS Regression 

   Multivariate Tests of Significance (S = 1, M = 1 1/2, N = 5 ) 

 

   Test Name         Value    Exact F Hypoth. DF   Error DF  Sig. of F 

   Pillais          .97173   82.50000       5.00      12.00       .000 

   Hotellings     34.37500   82.50000       5.00      12.00       .000 

   Wilks            .02827   82.50000       5.00      12.00       .000 

   Roys             .97173 

   Note.. F statistics are exact. 

 

CCA Model #2 Omitting Orthogonal Contrasts for the Three-Level "A" Way 

   EFFECT .. WITHIN CELLS Regression 

   Multivariate Tests of Significance (S = 1, M = 1/2, N = 6 ) 

 

   Test Name         Value    Exact F Hypoth. DF   Error DF  Sig. of F 

   Pillais          .26502    1.68269       3.00      14.00       .216 

   Hotellings       .36058    1.68269       3.00      14.00       .216 

   Wilks            .73498    1.68269       3.00      14.00       .216 

   Roys             .26502 

   Note.. F statistics are exact. 

 

CCA Model #3 Omitting the Orthogonal Contrast for the Two-Level "B" Way 

   EFFECT .. WITHIN CELLS Regression 

   Multivariate Tests of Significance (S = 1, M = 1 , N = 5 1/2) 

 

   Test Name         Value    Exact F Hypoth. DF   Error DF  Sig. of F 

   Pillais          .70671    7.83133       4.00      13.00       .002 

   Hotellings      2.40964    7.83133       4.00      13.00       .002 

   Wilks            .29329    7.83133       4.00      13.00       .002 

   Roys             .70671 

   Note.. F statistics are exact. 

 

CCA Model #4 Omitting the Orthogonal Contrasts for the Interaction Effects 

   EFFECT .. WITHIN CELLS Regression 

   Multivariate Tests of Significance (S = 1, M = 1/2, N = 6 ) 

 

   Test Name         Value    Exact F Hypoth. DF   Error DF  Sig. of F 

   Pillais          .97173  160.41667       3.00      14.00       .000 

   Hotellings     34.37500  160.41667       3.00      14.00       .000 

   Wilks            .02827  160.41667       3.00      14.00       .000 

   Roys             .97173 

   Note.. F statistics are exact. 
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 Tables 2 and 3 present the calculations to convert CCA lambda values 
back into conventional ANOVA FCALCULATED values. Obviously, one would not 
routinely perform ANOVA using CCA, but nevertheless the point that CCA is 
the multivariate GLM has hopefully been made! 
  
Table 2 
Step #1 in Converting CCA Results into Conventional ANOVA FCALCULATED 
Values: Running Full and Restricted Models for the Various ANOVA 
Omnibus Effects 
  

Model 
 
Predictors 

   CCA 
lambda 

1 A1 A2 B1 A1B1 A2B1 0.02827 
2   B1 A1B1 A2B1 0.73498 
3 A1 A2  A1B1 A2B1 0.29329 
4 A1 A2 B2   0.02827 
 
 
Table 3 
Step #2: Converting CCA lambda into Ratios into Classical ANOVA          
FCALCULATED Values 
 
Effect 

 
Ratio 

Full Mode 
lambda 

Lambda 
w/o effect 

 
Ratio 

A Way 1 / 2 0.02827 0.73498 0.03846 
B Way 1 / 3 0.02827 0.29329       0.09639 
AxB Interaction 1 / 4 0.02827 0.02827       1.00000 

 
 

Reasons Why I Advocate Teaching Statistics and  
Psychometrics from a GLM Perspective 

 
 Here are some of the reasons why I advocate teaching both statistics and 
psychometrics from a GLM perspective: 
 

1. Teaching statistics and psychometrics from a GLM perspective helps 
students understand that sampling error effects both p CALCULATED 
values and effect sizes no matter what analysis is being done. 

2. Teaching statistics and psychometrics from a GLM perspective helps 
students understand that weights are applied to measured variables to 
estimate latent variables in every analysis. For example, in a balanced 
ANOVA the eta values are also the beta weights for estimating Y-hat 
values in ANOVA (see Thompson, 2006). 

3. Teaching statistics and psychometrics from a GLM perspective helps 
students understand that it is the design, and not the analysis, that 
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provides the ability to make causal claims (see Thompson, 2006, 
chapter 12). 

4. Teaching statistics and psychometrics from a GLM perspective helps 
students understand that statistics and psychometric models do the 
same things, albeit it for different purposes: they partition variances 
(or sum of squares) and estimate ratios of those partitions in forms 
such as eta squared, R2, RC2, and reliability coefficients (see Dawson, 
1999). 

5. Teaching statistics and psychometrics from a GLM perspective helps 
students understand that all analyses are correlation, which among 
other things implies that all analyses can be conducted without a 
researcher's data, as long as one has the covariance matrix and means 
and SDs. These summary statistics are perfectly suitable as inputs into 
SPSS analyses (see Zientek & Thompson, 2009). 
 
 

Author Notes: Correspondence concerning this article should be 
addressed to Bruce Thompson at bruce-thompson@tamu.edu. 
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Appendix A 
Hypothetical Heuristic Data 

 

 1 1 1  94 790 12 41 14 

 2 1 1  95 795 51  6 88 

 3 1 1  96 800 79 99 32 

 4 1 2  99 780  9 16 79 

 5 1 2 100 785 60 33 14 

 6 1 2 101 790 97 30  3 

 7 2 1  99 785 28 64 90 

 8 2 1 100 790 46 64 12 

 9 2 1 101 795  2 23 84 

10 2 2 104 775 28  7 31 

11 2 2 105 780 84 21 66 

12 2 2 106 785 10 73 47 

13 3 1 104 800 65 83 39 

14 3 1 105 795 75 59 65 

15 3 1 106 790 96 69 17 

16 3 2 109 770 45 53 91 

17 3 2 110 775 47 48 29 

18 3 2 111 780 48 42 41 
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Appendix B 
SPSS Syntax File for the Illustrative Example 

 

SET BLANKS=SYSMIS UNDEFINED=WARN printback=listing . 

DATA LIST 

  FILE='c:\spsswin\can_14.dta' FIXED RECORDS=1 /1 

  id 1-2 exp_grp 4 gender 6 iq 8-10 gre 12-14  

  x1 16-17 x2 19-20 x3 22-23 . 

title 'show CCA is General Linear Model !!! can_14.sps !!!'. 

execute . 

list variables=all/cases=99999 . 

 

subtitle 'compute orthogonal contrasts #################' . 

execute . 

compute a1 = 0 . 

if (exp_grp eq 1) a1 = -1 . 

if (exp_grp eq 2) a1 = 1 . 

compute a2 = 0 . 

if (a1 ne 0) a2 = -1 . 

if (exp_grp eq 3) a2 = 2 . 

if (gender eq 1) b1 = -1 . 

if (gender eq 2) b1 = 1 . 

compute a1_b1 = a1 * b1 . 

compute a2_b1 = a2 * b1 . 

print formats a1 TO a2_b1 (F3) . 

list variabes=all/cases=99999 . 

subtitle 'show contrasts orthogonal %%%%%%%%%%%%%%%%%%%' . 

execute . 

correlations variables = a1 to a2_b1 . 

 

subtitle 'show CCA subsumes regression $$$$$$$$$$$$$$$$$'. 

execute . 

regression variables=iq x1 TO x3/dependent=iq/ 

  enter x1 TO x3 . 

manova x1 x2 x3 with iq/ 

  print=signif(multiv eigen dimenr)/ 

  discrim=stan corr alpha(.999)/. 

 

subtitle 'CCA subsumes factorial ANOVA ======='. 

execute . 

anova iq by exp_grp(1,3) gender(1,2)/statistics=all . 

subtitle 'b1  CCA subsumes factorial multi-way ANOVA ||||||'. 

execute . 

manova a1 a2 b1 a1_b1 a2_b1 with iq/ 

  print=signif(multiv). 

subtitle 'b2  CCA subsumes factorial multi-way ANOVA $$$$$$'. 

execute . 

manova       b1 a1_b1 a2_b1 with iq/ 
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  print=signif(multiv). 

subtitle 'b3  CCA subsumes factorial multi-way ANOVA @@@@@@'. 

execute . 

manova a1 a2    a1_b1 a2_b1 with iq/ 

  print=signif(multiv). 

subtitle 'b4  CCA subsumes factorial multi-way ANOVA ######'. 

execute . 

manova a1 a2 b1             with iq/ 

  print=signif(multiv). 

 

subtitle 'CCA subsumes factorial MANOVA @@@@@@@'. 

execute . 

manova iq gre by exp_grp(1,3) gender(1,2)/ 

  print=signif(multiv) . 

subtitle 'b1  CCA subsumes factorial multi-way MANOVA ||||||'. 

execute . 

manova a1 a2 b1 a1_b1 a2_b1 with iq gre/ 

  print=signif(multiv). 

subtitle 'b2  CCA subsumes factorial multi-way MANOVA $$$$$$'. 

execute . 

manova       b1 a1_b1 a2_b1 with iq gre/ 

  print=signif(multiv). 

subtitle 'b3  CCA subsumes factorial multi-way MANOVA @@@@@@'. 

execute . 

manova a1 a2    a1_b1 a2_b1 with iq gre/ 

  print=signif(multiv). 

subtitle 'b4  CCA subsumes factorial multi-way MANOVA ######'. 

execute . 

manova a1 a2 b1             with iq gre/ 

  print=signif(multiv). 


