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Contents Meta-Analysis is a procedure designed to quantitatively analyze the 
methodological characteristics in studies sampled in conventional meta-analyses to 
assess the relationship between methodologies and outcomes. This article presents the 
rationale and procedures for conducting a Contents Meta-Analysis in conjunction with 
conventional Effects Meta-analysis. We provide an overview of the pertinent limitations 
of conventional meta-analysis from methodological and meta-scientific standpoint. We 
then introduce novel terminology distinguishing different kinds of complementary meta-
analyses that address many of the problems previously identified for conventional meta-
analyses. We would also like to direct readers to the second paper in this series 
(Figueredo, Black, & Scott, this issue), which demonstrates the utility of Contents Meta-
Analysis with an empirical example and present findings regarding the generalizability of 
the effect sizes estimated.  
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We propose a new meta-analytic procedure, which we call Contents 
Meta-Analysis, for the purpose of analyzing the methodological 
characteristics of studies prior to conducting a conventional meta-analysis. 
The objective of this article is to present the rationale and detail the 
procedures for conducting a Contents Meta-Analysis in conjunction with 
the conventional procedures that we call Effects Meta-analysis, to 
distinguish it more clearly from the former. Our argument is structured to 
first provide an overview of the limitations of conventional meta-analysis 
from methodological and meta-scientific standpoint, and then to introduce 
some novel terminology distinguishing these different kinds of meta-
analyses, as well as between homogeneous samples drawn homogeneous 
from populations and heterogeneous metasamples drawn from 
heterogeneous metapopulations. In so doing, we will show how “Contents” 
and “Effects” meta-analyses are designed to be complementary and how 
the former functions to address some of the concerns previously identified 
within the latter. Finally, to illustrate how one may use these 
complementary methods in conjunction, we direct readers to the second 
paper in this series (Figueredo, Black, & Scott, this issue), which 
demonstrates the utility of Contents Meta-Analysis with an empirical 
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example and presents findings regarding the generalizability of the effect 
sizes estimated.  

Traditionally, the main forum for discussing empirical and theoretical 
discrepancies has been in the introduction section of academic papers, in 
which authors present arguments for and against the various points of 
view and draw a conclusion of their own. In theory, these introductions 
should be written based on a thorough review of the literature so that all 
appropriate primary sources are included. This rarely, if ever, happens in 
practice due to the sheer volume of available literature and the lateral 
spread (i.e., the diversity of research approaches and applications within 
or across research areas) of its content. Another major limitation of this 
approach is that the analyses done by the reviewers are qualitative in 
nature. As objective as we may try to be, unintentional biases in our 
selection and presentation of the supporting literature are almost certain 
to occur. We do this, knowing that the various precautions and controls 
that serve as the very foundations of the scientific method are designed to 
minimize the risk of bias at all levels of the research process. Why, when 
we generally take such pains to reduce sources of error using methodology 
and statistics, do we not always take the same measures in the process of 
research synthesis? 

Meta-analyses address this limitation by offering a procedure to 
quantitatively analyze the literature with the objective of estimating a 
mean effect size for the population of extant scientific studies and then 
examine how the presence or absence of certain study characteristics 
might moderate effect size variation. We propose a complementary meta-
analytic technique, termed Contents Meta-Analysis, as a supplementary 
analysis that permits investigators to produce a quantitative, evidence-
based taxonomy of the available types of studies, identify clusters or 
patterns in methodological strategies, and employ these factors as 
predictive constructs in structural models.  

The challenges of research synthesis and their relationships to 
scientific progress have been addressed in some fashion since the early 
1900s (see Cooper & Hedges, 1994, Ch. 1 for a review). However, the work 
that invited a more thorough, albeit sometimes contentious, discussion of 
a systematic, quantitative method of research synthesis occurred in the 
1970s with Tom Cook in 1974 and Gene Glass in 1976. They argued that 
despite the familiarity with and standard of using statistical analyses on 
primary data, the techniques could be modified such that they could just 
as well be conducted on secondary data. The advantages of practicing 
quantitative analyses of secondary data are numerous, not the least of 
which is that it provides a systematic way to analyze, and possibly even 
synthesize, discrepant results in the literature.  

Still, the field of meta-analysis is not without its critics. Secondary data 
analyses preclude the use of the experimental method. Meta-analysts are 
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only able to observe what already exists in the literature, so manipulation 
of variables is impossible. Consequently, practitioners of meta-analysis 
must take the same precautions to assure internal and external validity 
that are necessary for the design and implementation of primary data 
studies. For example, sampling errors in meta-analysis include selection 
bias and non-sampling error, but techniques have been developed to 
minimize their effects. During data collection, a variety of sources may be 
used to review and extract relevant research, including both published and 
unpublished work. This strategy minimizes publication bias and concerns 
about the rigor or “quality” of unpublished works can be tested empirically 
using moderator analyses. Publication bias may also be identified using 
funnel plots that provide a graphic representation of missing data and can 
be quantitatively evaluated using a Pearson correlation coefficient. 
Additionally, fail-safe numbers estimate how many null studies outside of 
your sampling pool would need to exist to produce an overall effect size 
that is statistically nonsignificant (Card, 2011). 

 
Methodological Problems: The Limitations of Conventional 

Meta-Analysis 
 
The Problem of Heterogeneity 
 

The standard function of meta-analysis is to estimate either a 
population parameter by averaging effect sizes across studies. Typically, 
meta-analysts will be aggregating data for a single bivariate relationship 
across a sample of studies. Interpreting this initial mean effect size 
depends on whether the effect sizes of the sample are homogeneous. In 
other words, when the effect sizes are homogeneous, they are all randomly 
sampling the same unitary population effect size. If the test for 
homogeneity rejects the null hypothesis, this indicates that the effect sizes 
are instead estimating systematically different population parameters, and 
that previously unspecified “follow-up analyses” are necessary. 

The nonexperimental nature of meta-analysis leads critics to point out 
that methodological heterogeneity precludes one of the fundamental goals 
of meta-analysis, which is to produce an average effect size for the 
“population” of studies that one is sampling. They argue that legitimately 
pooling results across studies would require identical study characteristics 
in the sample to be synthesized. Although meta-analytic techniques have 
been developed to take advantage of heterogeneity across studies, 
variation in operational definitions, measurement, design, and methods 
may hinder the meta-analyst from combining outcomes into a single 
statistic.  

To achieve greater clarity of exposition, we therefore propose that a 
terminological distinction be introduced to distinguish between a mean 
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effect size that is estimated for a homogeneous population of studies and 
one that is estimated for a heterogeneous population of studies. 
Unfortunately, the current literature continues to refer to the synthetic 
estimate as a “population” effect size even when it is found to be 
heterogeneous and therefore, by definition, to not describe the parameters 
of a single population but to instead describe an aggregate of several 
component populations, each with systematically different mean effect 
sizes. To sort out this terminological ambiguity, we propose to borrow the 
term metapopulation from biology for the heterogeneous case and reserve 
the term population for the homogeneous case (Levins, 1970). Levins 
(1969) defined a metapopulation as a “population of populations”, 
consisting of several parametrically distinct populations that are localized 
within it (see Figure 1 for a graphical representation). Similarly, just as a 
sample of studies can be used to estimate the mean effect size for a single, 
homogeneous population, a metasample of studies can be used to estimate 
the mean effect sizes (plural) for the heterogeneous set of mutually 
discriminable populations comprising the metapopulation. If data are 
synthesized across this heterogeneous assemblage of local populations, as 
well as merely within them (as is often recommended), then the results of 
data aggregation from the entire metasample of studies can be used to 
estimate the metapopulation mean effect size, as long as the magnitude of 
the dispersion  around  this  central  tendency is  also  specified.   As will be  

 
Figure 1. A Schematic Diagram of Populations Nested Within  
Metapopulations. 
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described below,  this  can be accomplished by  means  of  Generalizability 
Theory (GT) analyses, as adapted to meta-analytic applications. The 
relation here is analogous to that between the “group mean” and the 
“grand mean” in traditional analyses of variance, which can be estimated 
and have substantive importance even if the group means are significantly 
different. 

An advantage of synthesizing studies with heterogeneous 
characteristics is that it provides quantitative compensation for the bias 
associated with any given particular study characteristic. Eluding the 
skewing effects of bias and its diversion of the trajectory of science away 
from the “golden fleece” of truth is a cornerstone of the scientific method. 
Multiplism and the auxiliary tools for selection among methodological 
options have long been strategies promoted by historians and 
philosophers of science to address the problem of research bias. 
Chamberlin (1890) stressed that active precautions be taken to minimize 
bias in the development and testing of hypotheses. His proposed strategy 
encouraged scientists to adopt the method of multiple working 
hypotheses, reasoning that the diversification of investment into several 
theories diminishes the likelihood of a special affinity for any one 
hypothesis that might lead to confirmation bias. Correspondingly, Platt’s 
(1964) method of strong inference provided a guide to facilitate selection 
among the hypotheses following the Popperian canon of falsifiability. 

 
The Sources of Heterogeneity 
 

The observed effect size derived from any individual study is limited in 
terms of generalizability because the causal relationship under 
investigation is accompanied by variance from other sources, such as the 
testing method, setting, time, or any number of other variables. Cook 
(1993) termed these study components “irrelevancies” as they are 
systematically produced but not directly related to the causal relationship 
of theoretical interest. For example, if a construct such as optimism was 
measured using the Rainbows and Unicorns Scale (Extended)™, an 
individual’s score would consist of (at a minimum) the “true” optimism 
score plus “test-specific” variance associated with the measure itself. By 
measuring optimism using several convergent methods, one may kill two 
birds with one stone: acquire a value that better approximates the true 
optimism score, and generalize across conditions that constitute the so-
called Heterogeneity of Irrelevancies. As an added bonus, we may treat the 
irrelevancies as predictors in a model to produce more nuanced 
descriptions of optimism under different conditions. Of course, using them 
as a systematic source of variance disqualifies them as true “irrelevancies”. 

Nevertheless, some of these so-called “irrelevancies” may constitute the 
major threats to validity of meta-analytic models. Matt and Cook (2009) 
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provide a thorough outline of threats to the validity of meta-analytic 
models, including problems with sampling bias, underrepresentation of 
key attributes, coding methodology, and rater drift, among many others. 
For example, with regard to sampling bias, as in primary research, random 
sampling of the unit of study is very uncommon. The consequence of this 
is that sampling error is not randomly distributed so characteristics may 
be inadvertently (but systematically) weighted more heavily in certain 
groups. A related problem involves the inclusion criteria used to select 
studies for analysis, where those studies that were excluded may differ 
systematically from the sample pool, limiting inference from the sample to 
the target population. 

Although the sources of threats to validity described by Matt and Cook 
(2009) are important, there are additional sources that are commonly left 
unaddressed in meta-analyses. For instance, close review of study design 
features may reveal systematic associations between study characteristics, 
or combinations of study characteristics, and research outcomes. 
Campbell (1986) used the term local molar conditions to highlight the 
importance of qualifying one’s conception of internal validity as one that is 
nested within a particular set of circumstances rather than being a pure 
estimation as the theoretical construct implies. This conceptualization 
serves as an alternative to the “heterogeneity of irrelevancies”, although it 
describes similar phenomena, but characterizes them as potentially worthy 
of theoretical interest. 

In other words, even a true experimental design is not so pure in the 
Platonic sense; we are never truly reaching the Platonic εἴδωλον 
(transcendent ideal) of experimental design because any individual 
manifestation is a product of the experimenter who is still acting on his or 
her own limited experience. Thus, the term “local” is used as a qualifier to 
recognize that we are also sampling the temporal and spatial context in 
any given study. Both the setting and time in which a study is conducted 
are conditions under which an effect may or may not occur. The term 
“molar” refers to the kinds of discrete “packages” of methods or treatments 
tested by researchers that have produced apparently meaningful results 
and therefore continue to be used by the scientific community at large. Its 
use is also intended to acknowledge the fact that a given experimental 
method or treatment is constructed, as well as to grant it the right to be 
evaluated as it is, rather than against a pure, theoretical standard.  

Kuhn (1970) argued that the content and methods of science, and 
therefore its conclusions, depend on the current research paradigm. Each 
paradigm is encapsulated, operating under different assumptions, and 
using different standards for evidence. As such, the methodological 
variables that are available for investigation will correspond to the 
dominant paradigm, and will potentially change when a new paradigm 
takes over. Even if some remnants of prior methodological trends survived 
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a paradigm shift, by Kuhn’s definition, outcomes of the two paradigms 
would be incommensurable. Following Kuhn’s proposal, several others 
proposed modifications in order to rectify perceived limitations in his 
original model. Feyerabend (1975) took a completely different approach to 
defining paradigms and ideologically opposed the concept entirely. His 
view encouraged independent thought and eliminating the influence of 
ruling institutions and requirement to be consistent with others. He 
reconstituted Kuhnian paradigms as completely socially constructed, 
devoid of rationality and only reflecting ideas of society. Feyerabend 
agreed that paradigms create their own standards of evidence and this 
characteristic makes them resistant to change, but went beyond this 
assertion to argue that even the “context of justification” is a paradigmatic 
perspective.  

Lakatos (1978) introduced the idea that several research programs 
compete simultaneously. Laudan (1977) also disagreed with Kuhn’s 
characterization of paradigms as isolated and independent phenomena. 
Instead of long periods of stable dominance of a single paradigm, 
punctuated by rapid shifts to a new paradigm once the first paradigm 
became untenable, as Kuhn originally proposed, both Lakatos and Laudan 
argued that science evolves gradually. In Laudan’s “Research Traditions”, 
specific facets or aspects of a paradigm could be changed as necessary and 
all were potentially replaceable without changing the underlying tradition. 
Under this view, the criterion for accepting a Research Tradition was its 
effectiveness in solving problems. In line with Laudan, Lakatos proposed a 
slower process of change, but eliminated the serial element common to 
both Kuhn and Laudan. His model of scientific progress described the 
differences between what he termed Progressive and Degenerative 
“Research Programs”. Whereas Progressive ones explain more phenomena 
parsimoniously without increasing in complexity, Degenerative ones fail to 
make new predictions and become more elaborate to account for 
contradicting phenomena.  

This brief (and probably oversimplified) foray into the field of 
metascience is intended to drawing attention to the fact that any given 
research study is nested within a particular Zeitgeist (whether one calls it a 
Research Paradigm, Tradition, or Program). Critics may rightly respond 
that the influence of a particular Zeitgeist on research is perhaps one of 
the most difficult, if not impossible, sources of dependence to account for, 
at least in the Kuhnian sense of the term. As Feyerabend noted, even the 
context of justification exists within a socially-constructed framework and 
is thus paradigm-bound. We cannot observe the paradigm directly, just as 
an astronomer or physicist cannot observe the universe directly. We are 
only capable of trying to understand its structure through our limited 
methods of measurement. However, it is possible to reframe one’s 
conception of a paradigm to a more manageable construct that can be 
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clearly identified and delineated from other constructs. For instance, one 
may consider certain academic disciplines to possess different research 
paradigms. In the social sciences, psychology, sociology, anthropology, 
and economics all presumably adhere to different paradigms. In 
psychology, the field may be further disaggregated into social, clinical, or 
neuroscientific fields. In framing paradigms this way, it is important to 
recognize that these constructs may be nested within larger constructs, 
just as the researcher is nested within a particular laboratory. Once a 
paradigm has been operationalized, either through a priori research design 
planning or using exploratory measures, researchers conducting Contents 
Meta-analyses may quantitatively compare the effects of those research 
contexts on study outcomes.  

Statistical interdependence among study features therefore results in 
quantitative bias and obfuscates correct interpretations of the data. 
Although the overall fit of the model of interest may not be significantly 
affected by interdependence of predictors, multicollinearity will certainly 
change the estimations of individual parameters by inflating their 
standard errors and biasing our estimates of their effects. This problem is 
undesirable in any case, but especially so when testing structural models 
in order to make claims about causality. Predictors that may be causal in 
reality are rendered seemingly inert under conditions of multicollinearity. 
This potential to commit a Type II error in subsequent models without the 
affected predictor will produce incorrect model estimates, further 
contributing to uncertainty or ambiguity of causal influence, constituting a 
threat to the internal validity of the structural model. Researchers 
therefore need to account for local molar conditions in their meta-analytic 
studies in order to avoid distorting results.  

Figueredo (1993) discussed this problem, noting that these threats to 
generalizability in research synthesis cascade out of a single, common 
obstacle in meta-analyses: violations of independence among studies in 
the metasample. As any undergraduate with a basic understanding of 
ANOVA can tell you, the validity of the conclusions drawn depend on 
whether certain analytical assumptions are met; one of those assumptions 
is that of mutual independence among observations. When this 
assumption is violated, and data from dependent samples are synthesized 
and interpreted as if they were from independent samples, the mean effect 
size would be skewed in the direction of the results of those studies. 
Unfortunately, the results of any meta-analysis may be more susceptible to 
this violation for less obvious reasons than those articulated by previous 
researchers who focus on dependence within studies. A hierarchical 
taxonomy of understanding these methodological dependencies among 
studies may thus be constructed as follows: 

1. Multiple Studies by Single Researcher. The first source of 
dependence among studies lies with the single researcher. A typical 
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academic scientist conducts his or her research program by testing 
several related hypotheses to gain ground in a particular field of 
study. The way that research is conducted depends on a number of 
factors, such as funding, institutional support, previous experience, 
graduate studies, and the proclivities of his or her graduate advisor. 
Those characteristics represent a sample of possible characteristics 
held by someone conducting scientific research. Therefore the 
methods and conclusions produced by that researcher are limited 
by those parameters. A meta-analyst who includes several studies 
by the same researcher, then, will inadvertently bias the sample in 
the direction of the characteristics of that researcher. 

2. Multiple Researchers from Single “Laboratory”. Similarly, the 
intellectual context in which a single researcher operates is partially 
a function of the scholars in the immediate vicinity, all of whom 
come to the table with a particular set of skills and knowledge. 
Graduate students in the Ethology and Evolutionary Psychology 
program at the University of Arizona, for example, produce 
research in variable topics including attachment theory, morality, 
psychopathy, facial expressions, cross-cultural studies, behavior 
genetics, female fertility and mating, spatial distributions of 
different populations and so on. Regardless of this topical diversity, 
the underpinnings of those works are remarkably similar in their 
essence, clearly reflecting the constellation of characteristics that 
make up the research strategies, approaches, and areas of interest 
of our graduate advisors and their programs of research. In meta-
analysis, the problem remains that some perspectives may be 
oversampled while others are not. 

3. Multiple "Laboratories" within Single Research Paradigm. 
Laboratories themselves are also nested within a set of conditions 
that may influence dependence in meta-analytic studies. For 
instance, temporal conditions play a role in the types of technology 
available with which one may conduct research, or in 
methodological or theoretical advances made in the field upon 
which research may be based. Political conditions may dictate what 
areas of research are being funded or perhaps even how “academic 
freedom” is treated (but hopefully not). Intellectual conditions 
influence the major theories that are in vogue, which have the 
potential to shape research fundamentally, in terms of the 
questions, variables, methods, and interpretations generated by 
investigators. These socio-cultural ecological factors, or research 
paradigms (see Kuhn, 1970), have the potential to influence 
research outcomes, but are nevertheless neglected in traditional 
meta-analytic studies.  
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These dependencies among the data present a problem for those who 
view meta-analysis as a culmination of methodological advances designed 
to address the epistemological limitations of traditional methodologies 
that were brought to our attention by our philosophical forebears. Indeed, 
the fundamental structure of meta-analytic methods, that of 
acknowledging and incorporating multiplism in the research process, pays 
tribute to Chamberlin’s (1890) multiple working hypotheses, Platt’s (1964) 
strong inference, and Cook’s (1985) and Shadish’s (1993) critical 
multiplism. Still, the field may benefit from a review of the claims of 
philosophers and methodologists about how and when progress in science 
occurs, and what that may mean for researchers conducting meta-
analyses.  

 
Methodological Solutions: Two Complementary Techniques of 
Meta-Analysis 

 
Given the limitations of conventional meta-analysis, Figueredo & Scott 

(1992) proposed a complementary method to address some of the threats 
to internal and external validity described above. Applying this technique 
would not demand a significant cost of time or effort over and above what 
is already expended for a typical meta-analysis, but it directly addresses 
violations of independence of meta-analytic observations, such as similar 
design features across studies. 

 
The Strategy of Critical Multiplism  
 

The logic of multiplism was first extended to other aspects of research, 
in addition to the formulation and testing of hypotheses, when Campbell 
and Fiske (1959) proposed multioperationalism in psychometric 
measurement and demonstrated its utility for construct validation using 
the Multi-Trait Multi-Method Matrix (MTMM). MTMM analysis enabled 
researchers to quantitatively disaggregate trait variance from method 
variance and measure convergent and divergent validity. Attendant 
techniques for selecting among possible MTMM models using 
confirmatory factor analytic methods were later introduced by Widaman 
(1985). He presented a procedure with which to specify latent variable 
models for use with MTMM data and to use hierarchical nested model 
comparisons to produce more precise estimates of trait variance and 
method variance, and to test the degree of convergent and divergent 
validity. These combined contributions equipped researchers with a 
quantitative solution to account for bias associated with different methods 
of measurement. 

Shortly thereafter, the multiplist movement evolved to encompass all 
aspects of the research process with critical multiplism (Shadish, 1993). 
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This fully inclusive model of multiplism in methodology expanded from 
the previous applications to hypotheses and measurement to the selection 
of theoretical frameworks and models, research designs, methodologies, 
statistical analyses, interpreting results, and summarizing literature. 
Although multiplism at this level of complexity was not explicitly defined 
until the late 20th century, John Stuart Mill published his methods for 
inferring causality, one of which alludes to strategic use of multiplicity in 
methods, as early as 1843. The Joint Method of Agreement and Difference 
prescribes a symbiotic relationship between naturalistic methods that 
operate using the Method of Agreement, and experimental methods that 
operate using the Method of Difference. Mill’s method and the principles 
of multiplism were applied in a recent enterprise by social psychologists 
Mortensen and Cialdini (2009). Termed “full-cycle” social psychology, the 
authors recapitulated the biases inherent in laboratory and naturalistic 
studies but noted that, when paired, both the abilities and limitations of 
each method were complementary. Thus, if implemented in a cyclical 
fashion, where naturalistic observations are followed by review of current 
theory to explain the phenomena in question, empirical tests are 
conducted to test hypotheses predicted by theory, and the experimental 
results are then corroborated in a naturalistic setting, the limitations 
associated with any one method are minimized. 

Fundamental to all multiplist approaches to research is the idea that 
different types of methodology constitute systematic sources of bias. 
Shadish (1993) noted in his technical guidelines that, when employing 
critical multiplism, researchers should “note” (p.20; with no mention of a 
quantitative method) any moderating effects of particular methods and 
account for differences in results associated with methods with different 
biases. However, a comprehensive application of critical multiplism would 
demand virtual omniscience (which would preclude the need for scientific 
research in any case) to know all tasks entailed by a particular research 
question, the options for implementing those tasks, and their associated 
biases. Thus, Shadish prescribes enlisting the help of sources, including 
people and competing theories, whose biases differ from those of the 
primary investigator.  

The “critical” aspect of this proposed methodology must be 
emphasized. It refers to an attempt, by empirical or analytical methods, to 
identify systematic bias associated with different research options. It can 
be contrasted with “mindless” multiplism, which is a (clearly inferior) way 
of implementing multiplism without thinking about the contributions or 
costs of the options chosen (Shadish, 1993). As noted above, the use of a 
limited version of critical multiplism by an individual researcher is 
possible and would indeed strengthen any resulting inferences. An 
alternative, more efficient implementation (although in no way meant to 
dissuade individual researchers from integrating multiplism into their 



FIGUEREDO, BLACK, AND SCOTT 

32 

 

work) has been advocated by Shadish and others (e.g., Campbell, 1987; 
Figueredo, 1993) and entails adopting critical multiplism at the 
institutional level. Under this model, researchers in a given area of study, 
with unique and complementary skills and knowledge, would become 
contributors to addressing research problems systematically and 
systemically. Collaborations would take a new form, with diversity as the 
defining feature, rather than the status quo where “birds of a feather flock 
together”. A major institutional shift would be required in the sciences. 
Indeed, there are increasingly new initiatives to provide transparency in 
research, make data sets public, and provide a forum for work that would 
otherwise be left in the “file drawer”. In a number of ways, however, the 
current academic climate, and especially its incentive structure, may not 
have the requisite elements in place to foster a comprehensive application 
of critical multiplism. 

In the meantime, what can be done? As Figueredo (1993) pointed out, 
meta-analyses can easily accommodate multiplism; indeed it is woven into 
the very fabric of this type of analysis. Moreover, the multiplism supported 
by meta-analytic techniques can be critical, per the definition offered by 
Shadish. In fact, it may be the ideal tool for a critical approach because it 
can provide a quantitative analysis of the various options present across 
studies. As with Widaman’s extension of MTMM analysis to a more precise 
quantitative test of method variance, a correspondingly advantageous tool 
to estimate the contribution of all variations of all of the research elements 
to research outcomes is invaluable. Of course, since this process is 
retroactive in nature, there will always be a finite number of variations for 
each research element. At the aggregate level, it is also reasonable to 
suppose (and stands to be tested) that any given methodological or 
procedural variation will be reported multiple times in the literature, due 
to the predominant research paradigm or available technology.  

Critical multiplism implicitly operates under the variance components 
model where a given score in a distribution represents the amalgamation 
of the “true” score, plus systematic variance associated with 
methodological characteristics, plus unsystematic variance associated with 
apparent stochasticity. Meta-analysis provides a vehicle with which we can 
tease apart these elements quantitatively. Once we calculate values from 
aggregate data that describe study characteristics, it will be possible to 
identify correlated design features and clusters of research techniques 
which can then be analyzed using more complex statistical techniques 
such as exploratory and confirmatory factor analyses, and structural 
equation modeling.  

The implications of having these types of tools at hand are non-trivial. 
For instance, the analysis of secondary data shares the limitation 
associated with primary data research with regard to the degree of 
generalizability based on inclusion criteria. Meta-analysts face the 
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daunting task of specifying the exact criteria that study inclusion will be 
based on. Decisions must be made in the service of the research 
hypotheses being tested and, more practically speaking, with the 
consideration of the available budget, timeline, and personnel. Key 
determinations for study inclusion are the operationalization of variables, 
sample characteristics such as demographics and diagnostic criteria, the 
methods of measurement, study design, the specific regions from which 
data will be sampled, the time frame for data retrieval, and the types of 
publications that will be included, ranging from refereed journal articles to 
dissertations and conference proceedings and even possibly unpublished 
work left for an ignoble death in the infamous “file drawer” (Card, 2011). 
The thus far untapped advantage of meta-analysis, however, is that it 
provides an additional opportunity to quantitatively measure 
methodological limitations and exclusions in primary research at an 
aggregate level. Once they have been identified, it is then possible to 
prescribe future research directions that can rectify bias in methodological 
paradigms. One broader implication is the impact on the generalizability 
of meta-analytic results, which would be substantially enhanced with a 
body of science proactively employing critical multiplism (Cordray, 1986) 
 
Pooling the Results 
 

Once data have been extracted from the sample of studies and 
converted to an appropriate common metric of effect size, we have the 
data pool upon which all subsequent analyses will be conducted. We begin 
by generating descriptive statistics about the sample, with the key 
difference being the unit of analysis. In the primary data analyses, we 
describe the average person using measures of central tendency such as 
the mean, median, or mode. Similarly, we can calculate those measures for 
the sample of effect sizes and often the statistic of interest is the mean.  

A mean effect size is computed by dividing the sum of the effect sizes 
multiplied by its corresponding study “weight” by the sum of the study 
weights, where study weight may be a function of the standard error (e.g., 
1/SE2). The standard error for the mean effect size should also be 
calculated so that the resulting statistics can be evaluated for significance 
by calculating a z statistic (the mean effect size divided by the mean effect 
size standard error). You may note the irony in this resulting step, which is 
in direct contrast to our earlier criticisms of null-hypothesis statistical 
testing (NHST). We find it more than a little odd that some of the same 
methodologists that criticize the utility of NHST nonetheless, especially 
when overpowered (as by using larger sample sizes), tout the benefits of 
meta-analysis in increasing the power of NHST (as by pooling samples 
sizes so as to make them collectively larger). 
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Testing for Homogeneity 
 

Thus, although we begin by avoiding NHST, we end up by using it 
anyway. Nevertheless, this application of NHST is not without some 
function. Rather, it is just a first step leading to a series of options with 
which we can use to analyze these effect sizes. The next step is quite 
important, although it almost always produces the same result, and that is 
the evaluation of the homogeneity of the sample. 

The sampling distribution of effect sizes can reveal whether sources of 
variability are limited to sampling error, or whether sampling error is 
“supplemented” with other variability arising from study differences. The 
variability among mean effect sizes in the metasample, in comparison with 
the theoretically-constructed “standard error of the mean” that can be 
estimated under the “null hypothesis” that they are all drawn from a single 
homogeneous population, is our first indication that the data are not 
homogeneous. The estimation of this additional variance component 
permits us to estimate the dispersion of the individual parameters of the 
component populations about the aggregate parameter that can be 
estimated for the central tendency of the metapopulation as a whole.  

However, if we were not willing to accept subjective inferences about 
data synthesis before, we are certainly not going to start now. A 
quantitative, inferential test of homogeneity may be conducted which 
produces an estimate of whether all effect sizes could have been drawn 
randomly from the same unitary population parameter under the Central 
Limit Theorem. This Q-statistic is distributed as a Chi-square with (k–1) 
degrees of freedom, where k is the number of studies. The resulting value 
may be tested, again using NHST, and it almost always produces a 
significant result, indicating that the metasample is indeed heterogeneous. 
In other words, at least one effect size parameter in the metasample is 
derived from a constituent population with a systematically different mean 
than that of the metapopulation as a whole. 

 
Enhancing Statistical Power 
 

Contemporary meta-analytic methods (e.g., Hedges & Olkin, 1985) are 
lauded for their use of the effect size, rather than the significance test, as 
the unit of analysis (although some older meta-analytic methods did 
involve significance tests). The lackluster performance of the p-value as a 
useful criterion derives from its limited informational content, only 
indicating whether the effect in question is statistically non-zero. 
Additionally, as Rosenthal and DiMatteo (2001) and many others have 
pointed out, the result of any given significance test is a function of the 
effect size and of the sample size (p. 63). Thus, with a large enough sample 
size, a variable with even a small effect size may be found to be statistically 
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significant, which only indicates that the effect size is “not statistically 
equivalent” to a population parameter of zero.  

Schmidt (1992) argued that conclusions based on hypothesis testing 
are fundamentally misleading and showed that pooling effect size data has 
an added advantage of increasing statistical power1. He provided a 
hypothetical example wherein the true effect size in the population for a 
drug is .50. In the null distribution of this example, the mean is zero, with 
a standard error of .38. In both distributions, variation about the mean is 
due to sampling error. Using a one-tailed test with alpha equal to .05 
would require the observed effect size to be .62 or larger to identify a 
significant difference. With no effect in the population, only 5% of 
observed effect sizes would meet or exceed that value (see Figure 2).  
 
Figure 2. The Null Distribution of d Values in a Series of Experiments. 
Reproduced with permission from Schmidt (1992). 
 

 
 
However, the true population effect size is .50, as previously noted. 

This means that Type I error is actually zero because it is impossible when 
an effect actually exists in the population, and only Type II error can occur. 
It also means that obtaining an effect size of .62 or larger will only occur in 
37% of studies conducted (see Figure 3). A staggering 63% of studies 
conducted would lead to a false conclusion. Furthermore, estimates of the 
population effect size would be distorted because the mean effect size 

                                                        
1 The relationship between meta-analyses and statistical power will be described 
in further detail later in this paper. 
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estimated from significant tests of the hypothesis is well above the true 
population effect size. At a minimum, the lowest effect size associated with 
a “significant” result is 24% above the true value of .50. It is quite clear 
that there is a problem with significance testing when an observation equal 
to the true population effect size would lead to the conclusion that there is 
no effect. Schmidt then shows that a meta-analysis yields the correct 
conclusion. The average effect size will approach the population effect size 
if the number of studies is large and any sampling error will average to 
zero. 
 
Figure 3. Statistical Power in a Series of Experiments. Reproduced with 
permission from Schmidt (1992). 
 

 
 

 This brief example by Schmidt (1992) illustrates how meta-analysis can 
compensate for the low statistical power typically found in individual 
studies in the behavioral sciences (Cohen, 1962, as cited by Cohn & Becker, 
2003). Statistical power is quantitative and measures the probability of 
detecting an effect that truly exists. Unfortunately, as Cohn and Becker 
point out, traditional narrative syntheses of scientific literature do not 
account for the low power available in some studies, and this problem can 
create the illusion that an effect does not exist when it actually does. 
Although it is often said that enhanced statistical power results from the 
larger sample size as results from the sample of meta-analytic studies are 
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pooled, Cohn and Becker argue that this inference is incorrect. We now 
explore some of the reasons why this might be true.  
 
Frequently Rejecting Homogeneity 

 
In all likelihood, the sample of studies in a meta-analysis will include 

methodological characteristics that vary from study to study. 
Methodological variation is directly related to variation among the 
parameters of different populations represented in the metasample, so the 
assumption of homogeneity is usually rejected in meta-analyses (Osburn & 
Callender, 1992 as cited by Hunter & Schmidt, 2002).  

This insight is a mere stepping stone to a world of possibility where 
various analyses may be conducted, but it is immediately clear that we are 
not finished with our work and it would be inappropriate to simply report 
the mean effect size from our original synthesis. Possibilities include 
looking for moderator variables, as one might do in traditional analyses in 
an ANOVA or regression analysis, or accounting for between-study 
variance in a random-effects model and using that information to 
synthesize an adjusted metapopulation mean effect size for the aggregated 
heterogeneous sample. 

The choice of follow-up analyses depends on a number of factors to be 
evaluated by the investigator, but the end goal is the same: to determine 
what knowledge may be gleaned from a quantitative synthesis of data. 
Central to that goal is the estimation of the metapopulation effect size, 
properly adjusted for or qualified by systematic between-study differences. 
The quantitative method of data aggregation, in our estimation, is 
inherently superior to the more frequently employed, although less 
burdensome, standard literature review. 

 
Performing Causal Analysis of Discrepant Results 
 

There are a number of possible follow-up analyses which one may use 
to go further and model the variance among effect sizes in a heterogeneous 
metasample. Such a model is intended to provide a causal explanation of 
the observed heterogeneities. One possibility is to conduct moderator 
analyses, wherein sample or methodological characteristics are coded as 
independent variables in an ANOVA, and another is to use these sample or 
methodological characteristics as predictor variables in a multiple 
regression analysis that predicts the effect size as the criterion variable. 
More sophisticated analyses of these systematic effects may involve 
structural equations modeling and generalizability theory analyses, which 
may also use a combination of random and fixed effects. 

Fixed-effect models assume effect sizes are homogeneous and estimate 
a single population parameter. These models are limited in their 
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informative content and generalizability. A common analogy is with the 
analysis of variance (ANOVA), where the levels included in a model are 
supposed to represent all possible levels; thus, with regard to 
generalizability, a study would have to share the same study characteristics 
as those included in the fixed-effects model to draw any conclusions. They 
have also been criticized for overstating precision and distorting 
conclusions (Hunter & Schmidt, 2002). This is because the sample size of 
a study influences the overall population estimate, which is assumed to be 
the best estimate of the population effect size in fixed-effect models. 
Specifically, a study with a larger sample size will produce an estimated 
effect size with a smaller variance than a study with a smaller sample size. 
These estimates are more precise and weighted more heavily in the 
calculation of the mean effect size, with the additional consequence that 
the confidence interval will also be smaller. As the confidence interval 
decreases, statistical power appears to increase, so each additional study 
included in the meta-analysis leads to the appearance of higher statistical 
power (Cohn & Becker). 

In contrast, a random-effect model assumes heterogeneity of effect 
sizes, which indicates that at least one effect size has been sampled from 
populations with different mean effect sizes. In other words, a random-
effect model is used when population parameters are not the same in all 
studies in the metasample, so it assumes effect sizes are sampled from a 
metapopulation distribution which is greater in dispersion than that 
which would be expected from mere “sampling error” around the central 
tendency of any constituent population, consequently providing an 
estimate for the mean and variance of that heterogeneous metapopulation. 
Heterogeneity is quantified by calculating tau, and the mean effect size 
and standard error are adjusted accordingly. As additional studies are 
included in the meta-analysis, each with their own associated population 
parameters (according to the more localized component population from 
which each study in the metasample is drawn), the tau statistic may 
fluctuate and this leads to a potential increase in the estimated standard 
error, which in turn appears to decrease statistical power (Cohn & Becker). 
Cohn & Becker (2003) therefore distinguish the effects of data pooling on 
statistical power within fixed-effects versus random-effects models. 

A random effects model therefore represents a useful technique to 
model the heterogeneity among effect sizes because this method requires 
estimating the metapopulation variability in effect sizes, which is a 
function of: (1) the heterogeneity of the metasample, (2) the number of 
studies analyzed, and (3) the weight assigned to each study. The tau 
statistic, which estimates between-study variance, and an estimate of the 
sampling variance are combined to create a new weight that will be used in 
calculating the mean effect size and standard error for the heterogeneous 
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metasample (see Card, 2011). However, this method simply describes the 
heterogeneity and does not explain it. 

An investigator may then proceed to examine the contribution of 
varying study characteristics to the variation around the mean effect size 
when that variation cannot be explained by sampling error alone. These 
“effects” meta-analyses are useful in terms of their ability to explain 
variation in effect sizes using methodological variables as predictors. 
Depending on research objectives, fixed-effects and random-effects 
analyses permit researchers to look at trends over time, or select a 
methodological variable that potentially moderates the relationship under 
investigation. Nevertheless, a meta-analyst is ultimately limited to the set 
of variables available in primary research, which represent only a subset of 
the total population of characteristics available for study.  

This insight is not especially novel to scholars familiar with meta-
analytic techniques, but we would like to extend the usual criticisms to 
encompass limitations associated with the current, dominant research 
paradigms. For example, consider an ambitious investigator who is 
interested in aggression or deviant behavior over the last 60 years. The 
population of available research spanning this period is subject to several 
paradigmatic shifts in psychology, including behaviorism and the 
subsequent “cognitive revolution”. We argue that a diligent researcher 
would be remiss to not at least consider these contextual influences.  

These sources of dependence in the primary data threaten the utility of 
the meta-analytic method as a tool to estimate generalizability. The 
method proposed here may serve the dual purpose of accounting for 
statistical dependence and serving as a compass for future research 
endeavors. Cordray (1986) and Shadish (1986) have both suggested that 
meta-analysis may be employed to assess gaps in the literature for the 
purpose of strategically planning subsequent research. In this approach, 
conducting research becomes a collectivistic undertaking and the merit of 
a study depends on its additive value to the entire scientific enterprise 
rather than solely on the creative novelty of an individual researcher. 

 
Documenting the Design Features of Studies 

 
The heterogeneity of effect sizes in a metasample may be a function of 

variation in methodological variables (Osburn & Callender, 1992 as cited 
by Hunter & Schmidt, 2002). This relationship can be modeled using 
structural modeling (“model-driven meta-analysis”, Becker, 2009), which 
can provide a test of hypothesized causal relationships between different 
study characteristics and systematic variation in effect sizes. To be able to 
develop such a causal model of potential heterogeneities among observed 
effect sizes, it is necessary to first be in possession of the data that would 
be necessary to provide a basis for such an explanation. Thus, in the study-
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coding phase of meta-analysis, researchers usually take note of 
methodological and procedural characteristics of the studies in their 
sample. The type and number of variables depend on theoretical and 
practical grounds, but Stock (1994) proposes a basic classification system 
that includes characteristics of the report, setting or study context, 
subjects, methodology, treatment, process, and effect size. In the more 
mature phases of meta-analysis, variables classified during coding are then 
used to find patterns in the relationships between study characteristics 
and study outcomes. For instance, analyzing effect sizes as a function of 
the year the study was published may inform us about trends over time.  

For the purpose of looking at more complex phenomena than the 
standard single bivariate meta-analysis permits, Becker (2009) proposed 
the construction of an average correlation matrix. In this case, multiple 
bivariate relationships are of interest as well as the relationships among 
them. In brief, this method involves creating a correlation matrix for each 
study that includes all effect sizes of interest and then estimating the 
average effect size for each bivariate relationship in the matrix using a 
fixed- or random-effects model (depending on the characteristics of the 
sample and the goals of the investigator). The result is a synthesized 
correlation matrix upon which regression or path models can be imposed. 
This advanced methodology has the advantage of allowing researchers to 
examine indirect effects and mediating effects (Becker, 2009; Figueredo, 
1993). 

A major appeal of meta-analysis is its potential for the generalizability 
of results because its design is able to overcome limitations frequently 
present in primary studies. Insufficient power to detect true effects, as 
mentioned above, is a common problem plaguing primary studies, but this 
pestilence appears to be in remission in meta-analytic studies (although 
see discussion above as well as Cohn & Becker for a review of caveats of 
this assumption). Additionally, whereas any single study may be limited in 
the characteristics of its sample, methods, or procedure, a meta-analysis 
combines a variety of study characteristics, broadening its extrapolative 
reach.  

 
"Contents" Meta-Analysis 

 
 Originally proposed by Figueredo and Scott (1992), a contents meta-
analysis may be performed in conjunction with the conventional effects 
meta-analysis. While the latter may be used to examine the causal analysis 
of discrepancies in reported effects, it is still limited by the dominant 
research paradigm(s). This supplementary analysis is suggested in direct 
response to those limitations. 

Rather than focusing on the results of studies, contents meta-analysis 
is analogous to a “content analysis” of the text of a study. Content analysis 
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is a method used to systematically analyze the properties of large amounts 
of text (Holsti, 1969). The process begins by identifying the key linguistic 
characteristics of interest, which will then be used in a coding system for 
text analysis. For example, one may code the presence or absence of key 
words and use the resulting values to compare different bodies of text and 
make inferences about their relative meaning. More broadly, this process 
of identifying and measuring key characteristics is a central concept in 
program evaluation, market research, and trend analysis, among others. 
Within the context of a contents meta-analysis, this same basic process is 
applied to the content of the text in a sample of studies. In this case, a body 
of literature is coded according to a set of criteria determined by the 
objectives of the researcher.  

Specifically, the objective of a contents meta-analysis is to focus on the 
methods of studies by producing a quantitative analysis of their relative 
frequency and of correlated design features. The underlying argument is 
that the research tactics employed by a particular researcher, or within a 
particular laboratory or research paradigm, are not independent. 
Moreover, these tactics form “discriminable constellations of related 
elements” (Figueredo, 1993) that can be identified using common 
statistical methods. 
 One such method is common factor analysis, wherein patterns of 
common associations would be extracted from the sample of study 
features. For example, one may wish to identify whether certain disciplines 
tend to employ certain methods over others. Do we observe systematic 
differences in measurement methods across disciplines? Are psychologists 
more likely to use self-report whereas anthropologists may use naturalistic 
observations? Do medical researchers employ clinical interviews while 
economists use secondary data from national samples? More importantly, 
how does the method influence the outcome? If certain methods produce 
inflated effect sizes relative to others, we need to account for that. 

An appropriate application of factor analysis includes both exploratory 
and confirmatory analyses of correlated design features. Exploratory 
factor analyses produce factors based on statistical criteria; in this case the 
process is quite atheoretical but may serve as a starting point for 
subsequent analyses. A researcher then may elect to test whether the 
factors produced by the exploratory factor analysis are replicable on an 
independent sample using confirmatory factor analysis. Alternatively, a 
researcher may construct factors according to theory and test their model. 
The results of these factor analyses constitute the “multivariate 
operationalization of a research paradigm” (Figueredo, 1993) and permits 
development of measurement models of metascientific constructs, or 
paradigms represented by the research proclivities of an individual, a 
laboratory, a discipline, and so on.  
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Either way, the use of common factors rather than individual indicator 
variables as predictors has all of the well-documented benefits that are 
observed elsewhere in predictive models. As compared with single 
indicator variables, when common factors are used to stand in for an array 
of convergent indicators of the same constructs, the multiple 
operationalizations that they offer possess all of the following advantages: 
(1) increasing the reliability of measurement of the predictive constructs; 
(2) increasing the validity of measurement of the predictive constructs; (3) 
decreasing the absolute number of predictors, and hence the complexity of 
the model; and (4) decreasing the collinearity among model predictors. 

 
Relating “Contents” to “Effects” in Meta-Analysis 
 

Although the prospect of identifying measurement models of 
paradigmatic constructs is exciting enough, the potential for contents 
meta-analysis as an informative tool is not yet exhausted. Once the factors 
are identified and estimated, we may evaluate whether the effect sizes 
produced from one paradigm construct are different from those produced 
by other paradigm constructs. In essence, we may account for 
measurement effects in outcomes at the theoretical, rather than just 
empirical, level. The resulting latent constructs may serve as predictors in 
structural models. These “meta-analytic factor-analytic structural equation 
models” (Bentler, 1989; Scott, Figueredo, & Hendrix, 1992) provide a more 
sophisticated method of relating methodological contents of studies to 
magnitudes of effects reported. 

Employing these latent “paradigm” factors as predictors in a meta-
analytic model has at least two advantages. First, they serve as a data 
reduction method for model predictors by absorbing shared variances 
among different, but associated measures into a single construct. This 
prevents the superfluous inclusion of predictors that unnecessarily absorb 
degrees of freedom and risk overfitting of the model. A second, but related 
advantage involves the ability to control spurious relationships associated 
with statistical interdependence among predictors. In using this method it 
is possible to identify and control for systematic distortions in effect sizes 
(method variance) that result from common methodological practices. 
Contents meta-analysis permits the establishment of meta-analytic latent 
variable models to empirically test both the existence and the defining 
parameters of extant research paradigms. 
 
 

Summary and Conclusions 
 

We have tried to establish the methodological rationale and 
justification for the more widespread application of Contents Meta-
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Analytic methods by presenting the following series of arguments: (1) an 
overview of the functions, merits, and limitations of meta-analysis from 
methodological and meta-scientific standpoints; (2) the introduction of 
some novel terminology, highlighting the distinction between 
complementary methods of Contents and Effects meta-analysis, as well as 
between heterogeneous metasamples and metapopulations from 
homogeneous samples and populations; and (3) the rationale for using 
Contents Meta-Analysis as a supplemental technique to precede and 
increase the effectiveness of traditional meta-analytic methods.  

In response to the limitations of conventional meta-analyses described 
herein, we are therefore recommending a variant form of meta-analysis, 
which we call Contents Meta-Analysis, intended to be complementary to 
the traditional model, which we call Effects Meta-Analysis, to distinguish 
it from the former. Contents Meta-Analysis is designed to turn an 
erstwhile limitation, multicollinearity among predictors in a meta-analytic 
model, into a tool to explore the patterns that may exist in research 
practice that may compromise the non-independence of meta-analytic 
observations at the level of the studies sampled. We believe that the more 
widespread application of this method can not only enhance the practice of 
meta-analysis, based on the statistical problems that it solves, but also 
improve our understanding of the structure of the scientific literature that 
meta-analysis is meant to describe. 
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