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The number of methods for evaluating, and possibly making statistical decisions about, 
null contrasts - or their small sub-set, multiple comparisons - has grown extensively since 
the early 1950s.  That demonstrates how important the subject is, but most of the growth 
consists of modest variations of the early methods.  This paper examines nine fairly basic 
procedures, six of which are methods designed to evaluate contrasts chosen post hoc, i.e., 
after an examination of the test data. Three of these use experimentwise or familywise 
type 1 error rates (Scheffé 1953, Tukey 1953, Newman-Keuls, 1939 and 1952), two use 
decision-based type 1 error rates (Duncan 1951 and Rodger 1975a) and one (Fisher's LSD 
1935) uses a mixture of the two type 1 error rate definitions.  The other three methods 
examined are for evaluating, and possibly deciding about, a limited number of null 
contrasts that have been chosen independently of the sample data - preferably before the 
data are collected.  One of these (planned t-tests) uses decision-based type 1 error rates 
and the other two (one based on Bonferroni's Inequality 1936, and the other Dunnett's 
1964 Many-One procedure) use a familywise type 1 error rate.  The use of these different 
type 1 error rate definitionsA creates quite large discrepancies in the capacities of the 
methods to detect true non-zero effects in the contrasts being evaluated. This article 
describes those discrepancies in power and, especially, how they are exacerbated by 
increases in the size of an investigation (i.e., an increase in J, the number of samples 
being examined).  It is also true that the capacity of a multiple contrast procedure to 
'unpick' 'true' differences from the sample data is influenced by the type of contrast the 
procedure permits. For example, multiple range procedures (such as that of Newman-
Keuls and that of Duncan) permit only comparisons (i.e., two-group differences) and that 
greatly limits their discriminating capacity (which is not, technically speaking, their 
power).  Many methods (those of Scheffé, Tukey's HSD, Newman-Keuls, Fisher's LSD, 
Bonferroni and Dunnett) place their emphasis on one particular question, "Are there any 
differences at all among the groups?"  Some other procedures concentrate on individual 
contrasts (i.e., those of Duncan, Rodger and Planned Contrasts); so are more concerned 
with how many false null contrasts the method can detect.  This results in two basically 
different definitions of detection capacity.  Finally, there is a categorical difference 
between what post hoc methods and those evaluating pre-planned contrasts can find.  
The success of the latter depends on how wisely (or honestly well informed) the user has 
been in planning the limited number of statistically revealing contrasts to test. That can 
greatly affect the method's discriminating success, but it is often not included in power 
evaluations.  These matters are elaborated upon as they arise in the exposition below. 
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Contrasts and Alternatives 
 

When J random samples of observations are examined, the purpose is 
very often to find out whether there are differences between them 
(especially in their averages or means, mj) that are larger than can 
reasonably be attributed to random sampling variation or to random 
assignment of ‘subjects’ to ‘treatments’. Examining differences in averages 
(called ‘comparisons’) is a popular way to judge these things, but such 
simple functions have their limits; so differences between a single group 
average and the average of K other groups, or between the averages of two 
sets of groups, can often be more revealing. All these procedures are 
captured in the theory of contrasts (across means), in both their null and 
alternative forms.  Here we start with the general forms, then move to 
specific examples. 
Generally, a null contrast across the true means (μj) of J populations has 
the form: 
 
c1μ1 + c2μ2 + . . . + cJμJ = 0           {1} 
 
in which the cj are real numbers, not all zero, which sum to zero.  They are 
applied to the sample means (mj), and have usually been selected by the 
investigator to reveal what it is believed the sample means say about the 
relations among the true μj. 

When {1} is not true, what is true is the alternative: 
 
c1μ1 + c2μ2 + . . . + cJμJ = δ = gσ√(Σc2j)      {2} 
 

Here δ is the linear noncentrality parameter and, if the usual statistical 
distribution theory is to be used (e.g., the variance-ratio distribution), δ 
must be expressed in the units of the unknown standard deviation (σ); so 
the Greek letter has to be there.1  Since the presence of σ absorbs the scale 
of measurement used (be it centimetres or inches, kilogrammes or pounds, 

minutes or seconds, etc.) and √(Σc2j) absorbs the scale with which the 
contrast is expressed [so  (μ1+μ2)/2 - μ3  =  gσ√(1.5) is equivalent to μ1 + μ2 
- 2μ3 = gσ√(6)], the important quantity is g, which is a scale-free 
parameter.  It was created by Rodger (1975b, p. 215) and is not the same 
thing as g by Hedges (1981). The quantity g is obviously a very important 
parameter, and is further discussed below, especially in the section ‘Choice 
of g’. 

 
 

                                                 
1 A two-stage procedure created by Stein (1945), with tables provided by Rodger (1976, 
1978), can be used for numeric alternatives (without σ). 
 



POWER LOSSES OF MULTIPLE COMPARISONS 

22 
 

The best known contrast is the comparison: 
 
μ1 - μ2 = 0               {3} 
 
but others of equal, or greater, importance include: 
 
(μ1+μ2)/2 - μ3 ≡ μ1 + μ2 - 2μ3 = 0        {4} 
 
which compares the average of the first two population means with the 
third mean, and: 
 
(μ1+μ2)/2 - (μ3+μ4)/2 ≡ μ1 + μ2 - μ3 - μ4 = 0     {5} 
 
which compares the average of the first two population means with the 
average of the second two; and that type of arrangement can go on and on.  
Contrasts of these types are really essential if mean differences are to be 
detected efficiently. 
 
Noncentrality and Power: The basic theory of statistical power is due 
to Neyman and Pearson (1928a, 1928b, 1933a, 1933b) but, until the 
1990’s, its practical application had been largely ignored in the business of 
designing statistical investigations. Since then an increasing number of 
papers have been published on how to calculate a sufficiently large sample 
size (N) in order to ensure a reasonable probability (power β) of detecting 
a specified, true, non-zero effect. In spite of all that, research (using 
statistical methods) reported in journal articles typically have had sample 
sizes (N) that would yield rather low probabilities (β) of detecting even 
moderate-sized, true, non-zero effects. (In this paper, detecting where 
true, non-zero effects exist is taken to be the main purpose of power.) 
Various explanations have been put forward as to why ‘underpower’ 
continues in published papers, and a number of those are discussed by 
Morrison (2004), who also cites a number of papers that report the details 
of this ‘underpower’ in various sub-fields.  Unfortunately, Morrison cites 
none of Rodger’s papers on detection rate, though this current paper 
shows that the Rodger method is particularly simple, practical and 
effective. 
If the variance-ratio distribution is to be used in the analysis (e.g., rather 
than the Studentized range distribution), then it is a quadratic 
noncentrality parameter that is required in that distribution to compute 
power.  For the hth contrast that quantity can be written as: 
 

Δh = Nδ2h/(σ2Σjc2hj) = Ng2hσ2(Σjc2hj)/(σ2Σjc2hj) = Ng2h  {6} 
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(see {2} above) and that is part of the overall, quadratic, noncentrality 
parameter for analysis of variance (anova) to evaluate the classical null 
hypothesis: 
 
H0: μ1 = μ2 = . . . = μJ.                      {7} 
 
Clearly, {6} shows another very important property of g, i.e., its simple 

relationship to the F noncentrality parameter Δ. Also, H0 at {7} is true 
when any set of H = J-1, linearly independent2, null contrasts are true.  An 
important example is any set of mutually orthogonal (i.e., uncorrelated) 
null contrasts, such as the comparison-based set: 
 
μ1 - μ2 = 0               {8} 
μ3 - μ4 = 0               {9} 
μ5 - μ6 = 0               {10} 
μ1 + μ2 - μ3 - μ4 = 0            {11} 
μ1 + μ2 + μ3 + μ4 - 2μ5 - 2μ6 = 0         {12} 
 
Sets of contrasts are often represented in a matrix of their contrast 
coefficients (chj), such as the above H = 5, shown in Table 1: 
 
Table 1  
Mutually Orthogonal Contrast Coefficients (chj) 
   h     μ1     μ2     μ3     μ4     μ5     μ6 Σjc2hj 

   1     1    -1     0     0     0     0     2 
   2     0     0      1    -1     0     0     2 
   3     0     0     0     0     1    -1     2 
   4     1     1    -1    -1     0     0     4 
   5     1     1     1     1   -2    -2   12 

 
The null hypothesis at {7} is commonly evaluated by the statistic Fm in 

anova, i.e.: 
 

                                                 
2 Linear independence is essential to avoid repetition, and especially contradiction.  If one 
makes contradictory assertions, all those assertions become worthless.  For example, to 
assert 'because the statistics say so' that μ1-μ2=0, μ2-μ3=0 and μ1-μ3<0, is a contradiction, 
no matter what unthinking statistics one used on the mj.  It was a 'common notion' of 
Euclid (who lived around 300BC) that two things (e.g., μ1 and μ3) that are equal to the 
same thing (e.g., μ2), are equal to one another.  The statements μ1-μ2=0, μ2-μ3=0 and μ1-
μ3=0 are repetitious because any two of these implies the third.  In each of these two 
illustrations, the elements of the three statements constitute a linear equation, since A:μ1-
μ2=0, B:μ2-μ3=0, C:μ1-μ3=0 are linearly related by A + B = C; equivalent to (μ1 - μ2) + (μ2 - 
μ3) = μ1 - μ2 + μ2 - μ3 = μ1 - μ3. It seems strange to have to spell this out, but there continue 
to be scientific papers that make contradictory (linearly dependent) assertions, or 
something a little more vague but effectively equivalent to that! 



POWER LOSSES OF MULTIPLE COMPARISONS 

24 
 

Fm = NΣ(mj - m.)2/(ν1s2)          {13} 
 
in which m. is the mean of the sample means (mj), ν1 = J-1 is the 
numerator degrees of freedom for Fm, and s2 is the error variance (based 
on ν2 = J(N-1) degrees of freedom). 

When the null hypothesis at {7} is not true, then the distribution of Fm 
is the variance ratio distribution with degrees of freedom ν1 and ν2, but 
also with quadratic, noncentrality parameter: 
 

Δm = NΣ(μj - μ.)2/σ2            {14} 
 
in which μ. is the mean of the μj and σ2 is the true variance. It should now 
be clearer than ever where the σ in {6} came from. And one of the many 

beauties of the anova system is the algebraic similarity between Δm at {14} 

and Fm at {13}. Furthermore, when {7} is true, Δm = 0.  But that is by no 
means all, because for any set of (J-1) mutually orthogonal contrasts, each 
with a true value gh, then:  
 

Δm = NΣg2h              {15} 
 

A similar relation exists for any J-1 linearly independent contrasts (that 
need not be mutually orthogonal). That procedure involves a matrix 
product and a matrix inverse because non-orthogonal contrasts share (i.e., 
overlap) the variation among the mj (and among the μj). 

 
Equal N Used: So far, all the formulae have used a sample size (N) which 
is constant from sample to sample.  That constant-N rule will continue in 
this article.  There are formulae for unequal sample sizes (Nj in sample j) 
but they are somewhat more complicated than the constant-N forms; so 
not so easy to follow. Also, the use of unequal Nj raises the risk of 
weakening the validity of the procedures if the population true variances 
(σ2j) happen to be unequal; so should not be encouraged when analyzing 
means. 
 

The Post Hoc Methods 
 

There are basically two approaches to disentangling inter-sample 
(actually inter-population) differences.  If one has enough detailed 
information about where true inter-population mean differences lie, one 
can plan to test a set of J-1 linearly independent null contrasts before the 
random sample data are collected, choosing sample size (N) to yield a 
reasonably high probability (β) of rejecting each of the false null contrasts 
(true nulls will, hopefully, be retained), then test each contrast with a type 
1 error rate α (e.g., using a two-tailed t-test, or its equivalent t2 = Fα;1,ν2). 
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The same procedure applies if one’s scientific, theoretical understanding of 
the research topic provides a very clear idea of where the true differences 
among the μj should lie. In that case, one should (prior to obtaining the 
data) plan J-1 contrasts for testing that share out the sizes of effects more 
or less equally among the potentially false nulls. All of that sounds so 
unrealistic that it may apply only very rarely. Therefore, except for two-
group studies, research that uses ‘planned contrasts’ is likely to be 
treated with suspicion, especially if the fit of the tests to the sample data is 
rather close! 

The other approach is to choose the J-1 contrasts for decision making 
in the light of how the sample data turn out. That is the post hoc strategy, 
and one can pre-calculate the size (N) one’s samples need to be to detect 
contrast effects of pre-specified size, with expected detection rate Eβ. This 
approach can be criticized on the ground that it does not follow the 
hypothetico-deductive method of science (i.e., state a theory, deduce its 
observable consequences, collect appropriate data, and check that they are 
consistent with the consequences deduced from the theory).  But if error 
rate and power can be properly controlled, the post hoc strategy has much 
to recommend it. We often have a number of different, theoretical 
conceptions, and sometimes need data to indicate where differences do 
and do not lie; so theory deduction and observed confirmation are rather 
idealistic.  Once theoretical conceptions become clearer, it may then be 
possible to check them with a few, carefully-chosen planned contrasts! 
Apart from satisfying statistical criteria, an essential requirement is that 
whatever decisions the post hoc procedure yields should make scientific 
sense. 

Of the six different methods (examined here) that have been used to 
evaluate contrasts post hoc, i.e., after the data have been collected, 
examined and given a preliminary analysis, four use experimentwise or 
familywise type 1 error rates.  Usually such preliminary analysis is an 
analysis of variance (anova), but other procedures include the analysis of 
proportions and of ranked data. The post hoc methods reported on here 
that use experimentwise error rate are those of Scheffé and of Tukey.  
Newman and Keuls use a familywise error rate, and Fisher's LSD uses a 
mixture of experimentwise and decision-based type 1 error rates. 
 
Scheffé: This method says whether any contrast (h) across the sample 
means (mj) is consistent with the value of the true-means (μj) version 
being zero; maybe even deciding against thatB if: 
 

Fh = N(Σjchjmj)2/(ν1s2Σjc2hj) ≥ Fα;ν1,ν2       {16} 
 
in which α is an experimentwise type 1 error rate, such as 0.05 or 0.01.  
This is wonderfully consistent with the test of H0 at {7}, by rejecting that 
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H0 if the overall Fm at {13} is ≥ Fα;ν1,ν2.  If that overall test fails, no 
contrast in the data will be able to satisfy the {16} criterion. 
 
Tukey: Tukey defined his “Honestly Significant Difference” (HSD) as: 
 

|Σcjmj| ≥ qα;J,ν2 0.5Σ|cj|√(s2/N)        {17} 
 
where qα;J,ν2 is the critical Studentized range statistic, for J groups, with 
ν2 error degrees of freedom, and α is an experimentwise error rate such as 
0.05 or 0.01.  If the largest mj minus the smallest (i.e., the range of the mj) 
is not large enough, no other contrast across the mj will be large enough to 
meet the criterion. 
 
Newman-Keuls Multiple Range: This (NKMR) procedure by these 
two authors is for comparisons only and, like Tukey, uses a Studentized 
range statistic.  Since only comparisons can be evaluated, then 0.5 Σ|cj| = 
1.0 for all cases, and the NKMR starts with the largest mean difference 
(compared to qα;J,ν2) and if that comparison 'makes that grade', the 
NKMR procedure then looks at the next largest sub-range (i.e., largest 
mean minus second-smallest, and second-largest minus smallest), but 
evaluated against a sub-range of K = J-1 means, and so on.  The formula 
(compare with {17}) is: 
 
|mi - mj| ≥ qα;K,ν2 √(s2/N)          {18} 
 
Here α is one of the conventional probabilities (such as 0.05 or 0.01) but it 
is not, strictly speaking, an experimentwise type 1 error rate (except when 
K = J).  More generally, α is a familywise error rate (for various sub-range 
families). 
 
Fisher's LSD: This fourth method begins by evaluating H0 at {7} by 
comparing Fm at {13} against Fα;ν1,ν2 as in a traditional anova (much as 
Scheffé's procedure might do).  That is using an experimentwise type 1 
error rate. Only if Fm > Fα;ν1,ν2 will the LSD method proceed to evaluate 
any and all contrasts of interest by t-tests. Since the square of a t value is 
an F value with ν1 = 1, the procedure is to see whether any contrast (h) 
across the sample means (mj) is consistent with the value of the true-
means (μj) contrast being zero; maybe even deciding against that, if: 
 

Fh = N(Σjchjmj)2/(s2Σjc2hj) ≥ Fα;1,ν2        {19} 
 
This is a formula like Scheffé's at {16}, only here ν1 = 1 not (J-1).  The α 
used here is a conventional one (such as 0.05 or 0.01); so this is 
(supposedly) a decision-based type 1 error rate.  But if H0 at {7} is true 
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(hence all null contrasts are true), the effective type 1 error rate is notably 
larger than the supposed α within those experiments in which H0 has been 
rejected in error.      
 
When LSD Rejects a True H0: The Fm at {13} had ν1 = (J-1) as a 
divisor; so to compare what it reports against the Fα;1,ν2  at {19}, we must 
multiply Fm by (J-1).  Note that if (J-1)Fm > Fα;1,ν2 (the square of the 
critical t value), then we can ALWAYS find J-1 linearly independent, null 
contrasts to reject (by Fα;1,ν2) in the sample data.  But such contrasts are 
not necessarily very simple.  For example, contrasts such as: 
 
h = 1, μ1 - μ2 = 0             {20} 
h = 2, 4μ1 - 3μ2 - μ3 = 0           {21} 
h = 3, 7μ1 - 4μ2 - 6μ3 + 3μ4 = 0,        {22} 
 
though not very simple, are much simpler than others that might be 
necessary to squeeze into the 'rejection space' between (J-1)Fm and Fα;1,ν2. 
The three contrasts above are intercorrelated r12 = 0.97, r13 = 0.74 and r23 
= 0.86 but, although each pair of contrasts shares between them a good 
deal of the variation among the mj, they are linearly independent of one 
another.  That 'sharing' of the variation could be much, much closer if 
desired and, in that way, highly correlated null contrasts could all be 
rejected even if the 'space' between (J-1)Fm and the rejection criterion 
(Fα;1,ν2) is quite small.  Of course, closely correlated contrasts do not tell 
us much more (about the μj) than fewer more widely separated contrasts.  
At the limit, the most separated are orthogonal contrasts, and each of 
these reveals information about the true μj that is more or less 
independent of the others. 

To pursue further the notion of mutually orthogonal contrasts only, 
consider the rule (analogous to {15}) that says Fm is the sum of Fh for 
orthogonal contrasts. It follows that, when α = 0.05 and J = 4, N = 6: 
 
(J-1)Fα;J-1,ν2/Fα;1,ν2 = 3F0.05;3,20/F0.05;1,20   {23} 
                       = 3×3.098/4.351 = [2.1] = 2, 
 
which tells us that LSD can reject at least 2 out of J-1 = 3 mutually 
orthogonal null contrasts when H0 at {7} can be rejected (i.e., a 2/3 type 1 
error rate when H0 was rejected in error).  When J is larger, the number of 
erroneous rejections is worse.  When J = 12, N = 6, the {23} ratio becomes: 
 
(J-1)Fα;J-1,ν2/Fα;1,ν2 = 11F0.05;11,60/F0.05;1,60   {24} 
                      = 11×1.952/4.001 = [5.4] = 5 
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and when J = 24, N = 6: 
 
(J-1)Fα;J-1,ν2/Fα;1,ν2 = 23F0.05;23,120/F0.05;1,120  {25} 
                      = 23×1.620/3.920 = [9.5] = 9 
 
Though the number of rejections has increased, the ratios of rejections/(J-
1) have decreased.  But those numbers of erroneous null rejections are 
minima, because the observed Fm, against which the numerators (Fα;J-
1,ν2) are compared, are likely to be larger. 

Of course, the type 1 error rate is zero for all the contrasts in each of the 
experiments in which H0 at {7} has been accepted correctly (assuming the 
investigator believes in accepting nulls)!  But the general picture is one of 
infrequent bursts of many errors, and long sessions with no error at all.  A 
rather weird way to work, according to the authors, who prefer to sprinkle 
errors, little by little, as they proceed!  The effect of all this on detecting 
false nulls is discussed below, following Table 4. 

Fisher's LSD is a way of "keeping most of your 'rotten' eggs in few 
baskets."  But as is shown in Table 2 for the Scheffé procedure, your 
chance of recovering the real, healthy eggs diminishes dramatically as the 
basket grows in size! 

The LSD acronym for Least Significant Difference is amusing because, 
for centuries, the British used that acronym to refer to their pre-decimal 
currency L (librae, £, pounds), S (solidi, shillings), and D (dinarii, pence).  
But, as shown above and following Table 4 below, there is not much 'real' 
money in Fisher's LSD!   

The other two post hoc procedures are due to Duncan (1951, 1952, 
1955) and to Rodger (1967a, 1967b, 1974, 1975a, 1975b).  These both use 
decision-based type 1 error rates. 

 
Duncan's Multiple Range: The rationale Duncan gave for his multiple 
range procedure (DMR) is not easy to follow, but one that seems to fit the 
philosophy is Rodger's (1967a) original concept.  That is, suppose a 
researcher only ever studies two samples at a time, analyses the mean 
difference, then publishes the result. If we select K of her/his reports, in 
which the K sample-pairs are independent of one another then, if μ1-μ2 = 0 
had been true for every one of those K reports, and if type 1 error rate α 
had always been used, the probability that one or more of those K nulls 
had been rejected in error would be γ = 1-(1-α)K. That is the 
pronouncement of Bernoulli's Binomial Theorem!  If α = 0.05 then γ = 
0.19, 0.34, 0.46, 0.71 when K = 4, 8, 12, 24.  Those are embarrassingly 
high probabilities of error, but the researcher's procedure is beyond 
reproach (except maybe having better efficiency by studying more than 
just two samples at time).  If there's a cause for concern, it's more likely to 
be the standard used for judgment (i.e., committing one or more errors).  
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That being so, surely a researcher who studies J = 9 groups at a time (and 
makes J-1 = 8 decisions) should be allowed to tolerate the probability of 
one or more errors among the eight to be 0.34. 

Duncan's DMR is a step-down method like the Newman-Keuls multiple 
range procedure, but with a different (decision-based) familywise type 1 
error rate (if that is not too confusing a concept). Thus for Duncan, a 
comparison across the sample means (mj) is not consistent with a zero 
value of the true-means (μj) comparison if: 
 
|mi - mj| ≥ qγ;K,ν2 √(s2/N)          {26} 
 
where γ = 1-(1-α)K-1, and K is the step-down sub-range of the means 
compared.  [Note how {26} is similar to {18}.] When a comparison fails 
the {26} criterion, no other comparison inside that failed range can be 
allowed to pass its {26} test, no matter what the data in that comparison 
say. 
 
Rodger: The original proposal (1967a) was similar to Duncan's, though 
Rodger did not know of Duncan's work at the time (i.e., Rodger used γ = 1-
(1-α)ν1 to evaluate any and all contrasts across the means mj).  But the 
variance ratio distribution was used (not the Studentized range), there was 
no restriction on contrast forms (i.e., the method was not just for 
comparisons), and the procedure was to find H = J-1 linearly independent 
contrasts across the J values of mj (preferably H = J-1 mutually orthogonal 
contrasts) among which r nulls - given by {27} - would be rejected and ν1-r 
accepted.  By 1966, even before that first 1967 paper had appeared in print, 
Rodger realized that control of the average rate of null rejection (i.e., the 
expectation of r/ν1) would be a far better quantity to control (than the 
probability of rejecting one or more nulls in error); so he published tables 
(1975a) of the new criterion F[Eα];ν1,ν2  rather than his original Fγ;ν1,ν2. 
Rodger's procedure is, first compute: 
 
r = [Fm/F[Eα];ν1,ν2] ≤ ν1          {27} 
 
in which the outer [ ] indicate that any fraction must be deleted, and the ≤ 
sign says r cannot be allowed to exceed ν1, because no more than ν1 linearly 
independent contrasts are mathematically possible across J-1 = ν1 means.  
In order to fit the sample data better, mutually orthogonal contrasts are 
preferred (r of these are always possible, but some of them may be just too 
hard to interpret scientifically).  If the rule at {27} is followed, the expected 
(average) rate of rejection of true null contrasts will be Eα when H0 at {7} 
is true. 

Rodger (1975b) also published tables of the parameters Δ[Eβ];ν1,ν2 
which allow one to calculate the sample size (N) necessary to give one's 



POWER LOSSES OF MULTIPLE COMPARISONS 

30 
 

research project the probability Eβ of detecting null contrasts that are false 
by an amount ±g (or, more precisely, to bring the expectation of r/ν1 close 
to Eβ, if the variation among the μj – as given by {14} –  is at least ν1Ng2). 

Before an investigation starts, the investigator should work out (from 
the study of previous research on the topic) the size of the treatment effect 
(g2) he/she would like to detect (if it exists), the rate (Eβ, e.g., 0.95) at 
which he/she wishes detection to occur, then calculate: 
 

N ≥ Δ[Eβ];ν1,ν2/g2            {28} 
 

beginning by using ν2 = ∞. 

The procedure is much simpler than it sounds, it is illustrated by 
examples in Rodger's cited papers, and more information can be found, 
including a worked example, at:  
 
http://en.wikiversity.org/wiki/Rodger%27s_Method 
 

The Simple, Powerful Statistics (SPS) computer program carries out 
various Rodgerian statistical procedures, including sample size 
calculations as well as non-parametric analyses of proportions (as shown 
in Rodger 1969) and ranks. It also reports the values (in σ units) of the 
parameters (e.g., the μj - μ.) implied by the statistical decisions made. SPS 
is a free, Windows-based program that can be downloaded at: 
http://sites.google.com/site/SPSprogram 

An article describing both Rodger's method and the SPS program, 
which makes using it accessible to researchers, was published by the SPS 
creator Roberts (2011). 
 

Illustrative Power Comparisons 
 

To illustrate the differences in power between the methods, suppose we 
have normally distributed variates which have true means μ1 = 70, μ2 = 50, 
μ3 = μ4 = . . . = μJ = 60, all with the common variance σ2 = 100. The 
difference: 
 
μ1 - μ2 = 20 = gσ√Σc2j = 1.414σ√2        {29} 
 
has a very large g (1.414) - and more will be said about that below (see the 
section ‘Choice of g’) - but it allows us to use small samples to show 
reasonable power (β) when J is small. 

 
Illustration Data: We will draw random samples of N = 6 from J of 
these populations, use α = 0.05 (or Eα = 0.05) everywhere, and analyze 
the mean differences by (1) Tukey's (1953) HSD procedure for contrast 
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evaluation.  Procedure (2) will be Duncan's (1951) multiple range method 
(DMR, for comparisons only).  Both of these methods use the Studentized 
range distribution, but with different definitions of type 1 error rate. 
Technique (3) will be Scheffé's (1953) method.  Technique (4) will be 
Rodger's (1975b) method.  Both of those methods use the variance ratio 
distribution, with α = 0.05 for Scheffé and Eα = 0.05 for Rodger.  Because 
we will always use the first J groups of j = 1, 2, . . ., the overall, quadratic 
noncentrality parameter for the variance ratio distributions, will always 
be: 
 

Δm = NΣ(μj - μ.)2/σ2             {30} 
   = 6(102+(-10)2+0+...+0)/100 = 12.000 
 
no matter what value of J ≥ 2 is chosen. 

The Studentized range distribution does not have a noncentrality 
parameter which, in itself, is a serious limitation.  The Studentized range 
distribution uses the standardized true means to find the power, i.e.: 
 
(μj - μ.)/√(σ2/N) = (70 - 60)/√(100/6)      {31} 
                 = 10/4.082 = 2.449 
 
for μ1 - μ.; μ2 - μ. is -2.449 and all the other μj - μ. will be zero. 

The pattern of μj used here is very important because matters are not 

comparable if Δm is increased as J is increased - as has been allowed in 
some research on power - or if the value of the range of the standardized 
true means is increased as J is increased. 
 
Detecting a False H0: Table 2 shows the results of numeric integrations, 
in which βT is the power for Tukey's (and the NKMR) method, βD the 
power of Duncan's (DMR) procedure (both using the Studentized range 
distribution), βS the power for Scheffé's technique, and βR the power for 
Rodger's method (both using the variance ratio distribution). All of those β 
values  are  the   probabilities  of  rejecting  H0  at  {7},  or  its  equivalent, 
although Rodger does not treat that H0 as an hypothesis of primary 
interest.  β should be the same for all four methods when J = 2; the 
differences are due to computer rounding. 

Both Tukey's (and Newman-Keuls multiple range, NKMR) method and 
Scheffé's technique lose power quite dramatically as J increases: Tukey by 
more than 30% when J = 12, and by more than 40% when J = 24, Scheffé 
by more than 38% when J = 12 and by almost 55% when J = 24.  Tukey 
would need N = 10 to maintain β ≥ 0.8763 and Scheffé would need N = 11 
to   maintain   β   ≥  0.8764   when   J  =  12   (both    through     increasing  
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Table 2  
Powers (β) of Rejecting H0 by Various Methods  
 Num Gps J =     2     4     6     8    10    12    24 
Method  ErrorDF ν2 =   10   20   30   40    50    60  120 
Tukey &  q0.05;J,ν2 3.151 3.958 4.302 4.521 4.680 4.808 5.266 
NKMR             βT .8763 .7643 .7051 .6641 .6331 .6072 .5098 
Duncan q(0.05);J,ν2 3.151 3.190 3.250 3.300 3.340 3.374 3.498 
 DMR           βD .8763 .9015 .9144 .9241 .9322 .9392 .9674 
 Num DF ν1 =      1     3     5     7      9    11    23 
Scheffé F0.05;ν1,ν2 4.965 3.098 2.534 2.249 2.073 1.952 1.620 
            βS .8764 .7546 .6787 .6214 .5755 .5372 .3949 
Rodger F[0.05];ν1,ν2 4.965 2.126 1.499 1.226 1.068 0.961 0.620 
           βR .8764 .8875 .9059 .9215 .9355 .9483 .9946 
 
noncentrality and ν2). One must increase N in these notable ways, as J is 
increased, to maintain decent power; otherwise true non-zero detection 
capacity will be drastically reduced.  That is neither a characteristic of 
nature nor of mathematics, but an artifact of the choice of 
'experimentwise' error rates (controlling the rate at which H0 at {7} will be 
rejected in error at a conventional value of α) rather than decision-based 
error rates. C 

Happily, both Duncan's (DMR) and Rodger's methods not only hold 
their 'false H0' detection capacities as J increases, they actually improve 
them somewhat: just over 7% for Duncan, and just over 8% for Rodger 
when J goes from 2 to 12. 
 

Unscrambling the μj From the mj 

 
Duncan: Unhappily, the fact that Duncan's procedure is a multiple range 
method limits its capacity to unravel the likely differences among the μj 
that the mj indicate.  For example, suppose we are using J = 4 and our 
sample values turn out to be m1 = 70, m2 = 50, m3 = 59, m4 = 57 with s2 = 
180. Duncan's procedure would first examine m1 - m2 = 20 (the largest 
difference first), using q(0.05);4,20 = 3.190, where (p) is used rather than 
the code in γ = 1-(1-p)3 to make matters clearer.  That would reject: 
 
μ1 - μ2 = 0               {32} 
 
because: 
 
m1 - m2 = 70 - 50 = 20 > q(0.05);4,20√(s2/N)     {33} 
       = 3.190√(180/6) = 17.5 
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Moving in from there uses q(0.05);3,20 = 3.097; so m1 - m4 = 13 and m3 - 
m2 = 9 need to be at least as large as: 
 
q(0.05);3,20 √(s2/N) = 3.097√(180/6) = 17.0;     {34} 
 

therefore neither μ1 - μ4 = 0 nor μ3 - μ2 = 0 may be rejected. Only the first 
tested (μ1 - μ2 = 0) may be rejected.  But multiple range procedures do not 
make decision claims (one wonders what rȏle α serves for them).  These 
users underline the mj (not the μj) that do not differ by their criterion.  
Putting the mj in order of size, our (supposed) data yield: 
 
m2  m4  m3  m1             {35} 
         
-- 
  

What are we to believe about μ3 and μ4? Did the investigator believe 
that the sample evidence indicated that either of those parameters differed 
from μ1, or from μ2?  We should not be left guessing what the investigator 
believes the data indicate. 
 
Rodger: Rodger's method would note that: 
 
Fm = NΣ(mj - m.)2/(ν1s2) = 6×206/(3×180) = 2.289   {36} 
 
Hence, Rodger's method (see {27} above) says we may reject: 
 
r = [Fm/F[0.05];3,20] = [2.289/2.126] = [1.08] = 1   {37} 
 
null contrast, and the obvious one is μ1 - μ2 = 0 because: 
 
F1 = N(m1 - m2)2/(ν1s2Σc2j) = 6×202/(3×180×2)    {38} 
     = 2400/1080 = 2.222 > F[0.05];3,20 = 2.126 
 
This is not a great achievement, because Duncan's DMR said the same 
thing.  The difference is in what Rodger would do next, i.e., test and decide 
that: 
 
μ3 - μ4 = 0; F2 = 0.022           {39} 
 
μ1 + μ2 - μ3 - μ4 = 0; F3 = 0.044        {40} 
 
and for these three orthogonal contrasts: 
 
Fm = ΣFh = 2.222 + 0.022 + 0.044 = 2.288     {41} 
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which differs from {36} only by rounding error. 
Also, the three decisions for the μj tell us that our data support the 

interpretation: 
 
μ2 < μ3 = μ4 < μ1             {42} 
 
Accepting Null Contrasts: Note how {42} depends on the two nulls at 
{39} and {40} being 'accepted'; so those who never accept nulls cannot 
make such a 'logical' connection. Of course, accepting a null contrast is not 
'chipped in stone' and other evidence might indicate such 'acceptance' was 
likely a type 2 error. Furthermore, accepting a null contrast can be 
construed as acting as if the difference, if any, is negligible in the present 
state of our knowledge of the topic. Table 3 below provides 'guideposts' on 
how small is small;D at least from a statistical standpoint. We should be 
sensible about null contrasts, by accepting them when the evidence 
supports that (we are not 'proving' things with statistics), and make the 
whole process more rational by designing our investigations to have good 
power (in particular, good Eβ) to detect effects of reasonable size. 
 
Comparisons Only Limits: Because multiple range methods are 
restricted to comparisons (i.e., mi - mj only), they cannot easily decide that 
μ2 < μ3 < μ1 in the above example (or generally). Although the range 
statistic may indicate that μ2 < μ1, neither m2 nor m1 are different enough 
from m3 to claim either μ2 < μ3 or μ3 < μ1 (and similarly for m4).  Testing 
comparisons only, and no other forms of contrasts (as is the rule for 
multiple range methods), is a very serious limitation.  To reject μ1 - μ4 = 0 
(the next sub-range in our illustration) by the DMR would need a much 
larger sample size, N = 10 (using q(0.05);3,36 = 3.015 for the mj and s2 = 
180 in our illustration). To reject μ3 - μ2 = 0 (in that same sub-range) 
would need an even larger N.  That structural limitation exacerbates any 
reduced power problem that multiple range methods might have. 
 
Scheffé and Tukey: Neither of these methods would reject H0 for our     
J = 4 example data. Scheffé's method would find: 
 

Fm = 6Σ(mj - m.)2/(3×180)          {43} 
  = 2.289 < F0.05;3,20 = 3.098 
 
and Tukey's HSD would find: 
 
|m1 - m2| = 20 < q0.05;4,20√(180/6)       {44} 
         = 3.958√30 = 21.679 

Hence there would be no further analysis by either of these methods.  
Table 2 shows that the probability of these methods rejecting H0 correctly 
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were βS = 0.7546 and βT = 0.7643. Luck was not with them, though it was 
for Duncan's DMR (βD = 0.9015) and Rodger's method (βR = 0.8875), 
according to Table 2. 
 
Choice of g: It was noted at {29} above that the g value of 1.414 was 
large, but large g values do sometimes occur in research. Examples include 
some studies of pigeon learning and perception in which the birds have 
been so extensively trained that the variation in their behaviour is very 
slight. 

But usually we should be aiming to detect g values of 1.0 or less.  As an 
example of what that means, note that in the anthropometric study of 
Americans in 2003 to 2006 by McDowell et al. (2008), they found the 
average adult female and male standing heights to be 162.2 cm (5' 3.8") 
and 176.3 cm (5' 9.4") with standard deviation 11 cm.  That 14.1 cm (= 5.6") 
difference is: 
 
mm - mf = 176.3 - 162.2 = 14.1 ≈ 0.9×11√2      {45} 
 
so a g ≈ 0.9 or 1.0 is a noticeable difference. 
 

CohenE (1988, 1992) was a strong advocate for choosing N to set power 
(β), and had recommendations on what he considered to be small, 
medium and large effects.  But all of that was set in the traditional context 
(of anova and similar procedures) using experimentwise definitions of α 
and β. 

In Rodger's (1975a, 1975b) context of decision-based Eα and Eβ (being 
rejection rates per decision), a 'large effect' would have g2 around 1.00, a 
'moderate effect' is a g2 about 0.50, a 'small effect' is a g2 approximately 
0.25 and a 'slight effect' would be g2 around 0.125. The differences 
between the two sets of standards are illustrated in Table 3.  There it is 
assumed we are looking for the difference (|g|) in average standing height 
between two human, adult sub-populations, to be tested by an α = 0.05 t-
test, and the required N for each of the two random samples (one of males, 
one of females) to achieve detection probability β ≥ 0.95 is shown.  The 
McDowell data above provided the estimate of σ ≈ 11.  It is hoped that the 
representation of the L, M, S, Sl guideposts as standing height differences 
in both inches and centimetres will make them more comprehendible.  

The adult standing height data should provide a familiar norm, but 
each investigator will be able to establish norms for the subject matter 
being studied, assuming a decent estimate of σ2 is available. The data 
quoted here from the McDowell et al. (2008) report had 4857 women and 
4482 men. 
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Table 3  
N to Make β = 0.95 When α = 0.05 for Height |g| 
Standards      (μm-μf)cm (μm-μf)in      |g|        g2      N 
McDowell    14.10    5.55    0.906    0.822      17 
Cohen L      8.80    3.46    0.566    0.320      42 
Cohen M      5.50    2.17    0.354    0.125    105 
Cohen S      2.20    0.87    0.141    0.020    650 
Rodger L    15.56    6.13    1.000    1.000      14 
Rodger M    11.00    4.33    0.707    0.500      27 
Rodger S     7.78    3.06    0.500    0.250      53 
Rodger Sl     5.50    2.17    0.354    0.125    105 
Note: Effect sizes are: L=large, M=medium, S=small, Sl=slight. 
 
Using g2 = 1: If we had designed our power illustration for Table 2 to 
have a g ≈ 1.0, that would make μ1 = 70, μ2 = 56, μ3 = μ4 = ... = μJ = 63 and, 
remembering that σ2 = 100: 
 
μ1 - μ2 = 14 ≈ 1.0 σ√2            {46} 
 

To detect this |g| with any of the procedures, setting β ≈ 0.9, would 
require N = 12.  With this double-sized N, if J is increased as in Table 2, 
the percentage loss of power (β) is similar to that of the smaller N = 6.  
Thus our revised N = 12 and μj make Δm = 11.760 and with F0.05;1,22 = 
4.301, Scheffé's method gives βS = 0.9059 (when J = 2), but with 
F0.05;11,132 = 1.862 (when J = 12), we find βS = 0.5695 (a 37% drop) - 
and the drop is more as J increases.  Similarly, Tukey's (and the NKMR) 
procedure, using q0.05;12,132 = 4.689 and (μLG-μ.)/√(σ2/N) =(70-
63)/√(100/12) = 2.425, with -2.425 for μSM, and all other (μj-μ.)/√(σ2/N) 
= 0, shows a drop from βT = 0.9059 (when J = 2) to 0.6314 (a 30% drop at 
J = 12), and bigger drops as J increases.  Both these methods, of course, 
have larger ν2 = J(N-1) when N = 12.  The only post hoc methods to hold 
their power as J increases are Rodger's method (βR) and Duncan's DMR 
(βD), but Duncan's method has the serious, limiting problem of 
'comparisons only' when 'looking' inside the full range. 
 
Unprotected t-tests: With this procedure one tests any contrasts at all 
(after examining the sample data) by a conventional t-test (i.e., using the 
conventional α = 0.05 or 0.01) without any prior check, such as the check 
on Fm used in Fisher's LSD.  Everyone should know that this method 
inflates the type-1 error rate considerably beyond the 'conventional' α 
value cited.  Nevertheless, this practice continues, and papers explicitly 
using it are published in what one would think are reputable journals. 

Given that t0.05;ν2 is used, what is the actual type-1 error rate when 
the null contrast is true?  One of the simplest ways to examine this is to 
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compare what t0.05;ν2 would find according to the correctly-appropriate 
Studentized range distribution (q); for example, for comparisons such as 
mi - mj.  The critical qcrit;J,ν2 appears in the formula to reject μi - μj = 0 
when: 
 
|mi - mj| ≥ qcrit;J,ν2 √(s2/N)          {47} 
 
and the t formula says reject μi - μj = 0 when: 
 
|mi - mj| ≥ tα;ν2 √(2s2/N)          {48} 
 
It follows that the q equivalent (say, Q) for t, equating the right-hand sides, 
is: 
 
Q = tα;ν2√2               {49} 
 
For example, from Table 2, we see the 'true' equivalence of F0.05;1,10 = 
4.965 (the square of t0.05;10) and q0.05;2,10 = 3.151 as: 
 
√(2×4.965) = 3.151 = q0.05;2,10        {50} 
 
Table 4 shows what type-1 error rate the Studentized range distribution 
gives for qcrit;J,ν2 = t0.05;ν2√2.  In all cases, N = 6 is used, (the μj are all 
equal) but the mj are arranged in order of size, smallest on the left to 
largest on the right. If we have J = 12, then ν2 = 60, and the tabled 
t0.05;60 = 2.000; so in the Studentized range distribution the formula 
equivalent to that t is Q = t√2 = 2.000√2 = 2.829. When that is used to 
evaluate m12 - m1 (the largest observed difference), the type-1 error rate is 
not the 'assumed' 0.05 but 0.691. That is the integral of the Studentized 
range distribution for J = 12, ν2 = 60, and all μj equal. With the same J = 
12, if we use t0.05;60 = 2.000 (Q = 2.829) as if in a Newman-Keuls double 
step-in subrange to evaluate m11 - m2 (with K = 10), then the type-1 error 
rate is 0.602.  These results show an appalling state of affairs, no matter 
how critical one might be of conventional α values. 

Table 4 does cast some light on the problem that ended the section on 
Fisher's LSD.  It is true that, for our Table 2 data (which had N = 6), H0 at 
{7} will be correctly rejected in about 54 of 100 experiments (see βS = 
0.5373), but there are still 10 values of μj (j = 3 to 12) that are equal to one 
another. 

Assuming that m1 is the largest mean and comes from the large μ1, and 
m2 the smallest mean from the small μ2, then m1-m2 will be the largest 
difference, and there will be 10 means remaining (being, μ3 = μ4 = . . . μ12).  
Table 4 tells us that the probability of rejecting the true null (by a t-test) 
for a pair over that span of 10, is 0.602, and moving in to a span of 5 
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means, the probability of erroneous rejection for a true null over a 5-span 
pair will be 0.278.  The fact that this kind of fiasco may happen in only 54 
of 100 experiments should provide little comfort to the Fisher LSDer! 
 
Table 4  
True Type-1 Error Rate For t0.05;ν2  (N = 6) 
          J    =     6    12    24 
          ν2    =    30    60   120 
t0.05,ν2  = 2.042 2.000 1.980 
         Q    = 2.888 2.829 2.800 
   Range          =     6    12    24 
True Type-1   = 0.344  0.691 0.949 
 Sub-Range    =     4    10    12 
True Type-1   =  0.196 0.602 0.706 
 Sub-Range    =     3     5     6 
True Type-1   =  0.119 0.278 0.359 
 
 

Methods for Testing Planned Contrasts 
 

There are three well known approaches to testing (J-1), or fewer, 
linearly independent contrasts that were planned independently of the 
sample data used to test them. 
 
Properly Planned t-tests: This is the method usually referred to as 'the 
method of planned contrasts'.  In that method, no more than H = J-1 
linearly independent contrasts are chosen before the sample data are 
collected (or CERTAINLY without knowing anything about how the 
sample data turned out), then testing and deciding whether to accept or 
reject each of those null contrasts after the data are collected.  The 
temptation to treat a contrast, chosen after looking at the data, as if it was 
a planned contrast, MUST be resisted because that greatly increases the 
type-1 error rate, as Table 4 shows. It will not do to say, "Well, I could 
easily have planned this contrast, now that I think about it!" 

Properly done, planned t-tests can be very effective.  For our Table 2 
data, if a researcher chose to test μ1 - μ2 = 0, among possibly J-2 further 
contrasts, he or she would detect the falsity of that null with probability 
0.8764 (if N = 6 is being used).  Of course, tests on any of the μk (for k > 2) 
would be tests on true nulls and those J-2 should show null rejection at the 
rate α = 0.05, if the contrasts had been chosen prior to the data collection.  
However, if our researcher did not 'know' the 'wise' tests (usually based on 
very good prior evidence - clairvoyance is not reliable!) and, from among 
the (say) J = 6 groups used, he or she tested μ1 - μ3 = 0 instead of μ1 - μ2 = 
0, that smaller difference (70-60 = 10 rather than 70-50 = 20), would be 
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detected with a probability of only 0.3886 (rather than the 0.9179 for μ1 - 
μ2 = 0 with this 6-groups larger ν2 = 30).  There is always an infinite 
number of sets of H = J-1 linearly independent contrasts possible, among J 
> 2 means; so 'wise' choice is either very wise or very 'suspicious'.  More 
likely, the honest choice misses some of the most seemingly interesting 
results, and finding one or two Fh fairly close to the critical Fα;1,ν2 but not 
large enough to reject the null may engender some mental stress - at the 
very least! 
 
Planned Contrasts with Experimentwise Error Rates: There are at 
least two procedures for testing H = J-1 linearly independent, planned 
contrasts, but with control of the experimentwise type-1 error rate at a 
conventional level (e.g., 0.05, 0.01).  These are the use of Bonferroni's 
Inequality, and Dunnett's (1964) Many-one procedure.  It is appropriate 
here to ask how well these methods would detect the true differences in 
our illustration data in Table 2. 

First, just as we might interpret Duncan's method for the post hoc 
evaluation of comparisons as an application of the multiplication theorem 
of probabilities, Bonferroni’s Inequality uses the addition theorem of 
probabilities.  That says, in effect, if you wish to test H null contrasts and 
ensure that the probability of rejecting any one (or more) of them in error 
does nor exceed 0.05, you should not use the individual rate 0.05 but 
rather use 0.05/H.  Thus when J = 6 and H = 5, the notional 0.05 is 
replaced by 0.01.  Also, when J = 12, H = 11, then 0.05 is replaced by 
0.05/11 = 0.004545; and so on.  Those changes will reduce considerably 
the rate for detecting nulls that are not true.  Dunnett's Many-one 
procedure is for H = J-1 comparisons, in which each of J-2 means is 
compared to one particular one, e.g., a control group.  Dunnett (1964) 
produced special tables of his t-like statistic dα;H,ν2 by integrating 
multivariate t distributions. 

As with all planned contrasts, it matters greatly for the Bonferroni 
procedure which contrasts are planned.  In our Table 2, μ1 - μ2 ≠ 0 will be 
much more often detected than μ1-μ3, while null contrasts across the μk (k 
> 2) are all true; so will be rejected rarely - and ever more rarely as J 
increases.  A similar principle applies to Dunnett's Many-one method.  To 
find out how the μj might be patterned, it matters greatly which 'control' 
mean is selected.  Obviously μ1 would be the most revealing because then 
we would be testing μ1 - μ2, μ1 - μ3, μ1 - μ4, μ1 - μ5, μ1 - μ6 and so on.  That 
should show a big difference for the first, and a smaller difference for each 
of the others.  But if the 'control' mean is any of the μk for k > 2, then there 
will be J-3 null differences, and two moderate differences (with μ1 and 
with μ2). 

The use of Bonferroni-adjusted t-tests has been advocated, and 
seemingly is still in use, for contrasts chosen post hoc.  But Rodger (1973) 



POWER LOSSES OF MULTIPLE COMPARISONS 

40 
 

showed that post hoc choice inflates the experimentwise type 1 error rate 
beyond the claimed α. 

The results of the numeric integrations of the noncentral variance ratio 
distribution are shown in Table 5.  The critical t values used have been 
squared to make F values - FB for Bonferroni's t, FN for Dunnett's t. Also, 
the results of a conventional 5% t-test are given for Ft. The power (β) for 
rejecting two or three particular null contrasts (assuming they are among 
the J-1 planned) are given, βB for Bonferroni's method and βN for 
Dunnett's procedure, and βt for Ft. Only two comparisons are shown for 
Dunnett's (comparison-restricted) method. The μj for the planned 

contrasts are those given in Table 2, and these make Δh = 12.0, 9.0, and 
3.0 for the three stated contrasts, respectively. 

As is well known, Dunnett's method has a bit more power than 
Bonferroni's procedure.  However, Dunnett's method is restricted to a 
particular set of comparisons (the many-one set).  Also the power for 
detecting that the largest comparison μ1-μ2 is not zero, though apparently 
better than either the Scheffé or Tukey (NKMR) methods, is notably 
poorer than what either Duncan's or Rodger's method could produce.  And 
that does not seem to be well known. Also, Rodger's procedure gives one a 
free, post hoc, choice of contrasts (subject only to the r rule of {27} and the 
requirement of linear independence, preferably mutual orthogonality). 
The detection power of both Bonferroni's method and Dunnett's depends 
on how 'wisely' the planned contrasts (or 'control group') have been 
chosen - this is not a problem for Duncan, and especially not for Rodger. 
 
Table 5  
β for Specified, Planned Contrasts 
      Method      J = 6        12        20 
For N = 6,     ν2   =        30        60      100 
Bonferroni   FB =    7.563    8.694   9.518 
(μ1-μ2)            βB =    0.7565   0.6950   0.6473 
(μ1+μ3-2μ2)   βB =    0.6018   0.5246   0.4699 
(μ1-μ3)            βB =    0.1741   0.1224   0.0943 
Dunnett        FN =   7.398   8.180   8.820 
(μ1-μ2)            βN =   0.7655   0.7245   0.6883 
(μ1-μ3)            βN =   0.1811   0.1401   0.1143 
Conventional Ft =   4.171    4.001    3.936 
(μ1-μ2)             βt =   0.9179   0.9262   0.9293 
(μ1+μ3-2μ2)    βt =   0.8271   0.8393   0.8440 
(μ1-μ3)             βt =   0.3886   0.3993   0.4035 

Note:  μ1 = 70, μ2 = 50, μ3 = μ4 = ... = μJ = 60, σ2=100, N=6 as for Table 2. 
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βt improves as one moves across the columns, in the Ft section of Table 
5. That is because increasing ν2 increases power. But that phenomenon is 
swamped for FB and FN because increasing J increases H = J-1, decreases 
the decision error rate (to keep the experimentwise error rate constant at a 
conventional value) and thereby reduces the contrast power β. Also, for 
each of the procedures, as one moves down a column, power diminishes.  

That is because Δh diminishes from 12 through 9 to 3. 
Finally, when J = 6, according to Table 2, Duncan's DMR had βD = 

0.9144, and Rodger's βR = 0.9059. Both of these are notably better than 
either Bonferroni's or Dunnett's method, and almost as good as the 
planned t for μ1 - μ2 = 0. Duncan's βD is for mLG-mSM, the largest observed 
difference, very likely for μ1 - μ2. Rodger's βR uses 6Σ(mj-m.)2, which is an 
estimate of 6Σ(μj - μ.)2, and for our data in Table 2, is = 6Σ(μj - μ.)2 = 
6(100+100) ≡ 6(70-50)2/2 = 6(μ1-μ2)2/Σc2j. With both of these post hoc 
methods, one has the huge advantage of being informed about how the mj 
turned out and, with Rodger's procedure, complete freedom to choose 
linearly independent contrasts of any form (not just comparisons). 

Unfortunately, rather few statistical investigations of contrasts set g 
and β or Eβ before the data are collected, and most fail to compute the 
sample size N required to make the g detection rate β or Eβ. For these 
reasons science progresses more slowly than it should.  It is hoped that 
this paper will make such preparation easier and less confusing.  If N were 
chosen to detect a stated g at a reasonable rate β or Eβ, there would be 
fewer ups and downs among research reports.  What the investigator 
claims to have found and what not to have found would be clearer; so 
easier to be challenged or refuted by others. Surely, that is the way for 
scientific knowledge to progress. 
 

Concluding Statement 
 

This report has examined the 'power' (β) various methods have to 
detect false null hypotheses, such as the traditional (overall) H0, and null 
contrasts, in fixed-effects statistical investigations of the 'true' means (μj) 
of normal variates of J populations. The methods studied were either 
designed to evaluate contrasts post hoc or as a pre-planned set.  The 
methods also either employ a conventional type 1 error rate (e.g., α = 0.05) 
on an experimentwise basis (for the J populations), or on a decision 
basis (e.g., expected rejection rate Eα = 0.05) for the final decisions about 
H = J-1 contrasts.  The extent of the falsity of H0 was fixed by using a 

constant noncentrality parameter (Δm).  This came from using a constant 
sample size (N) with a constant pattern and amount of variation among 
the true means (μj).  In that way there was no confounding of effect size 

(Δm) and investigation size (J populations).  The results are summarized 
below. 
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I: For post hoc methods with conventional, experimentwise error rates 
(Scheffé, Tukey and Newman-Keuls), the power (β) for detecting the 
falsity of H0 drops dramatically as J increases. 
 
II: That same type of detection loss for those three procedures occurs in 
their ability to detect false null contrasts. 
 
III: Those losses of power (and of false null contrast detection capacity) 
with increasing J, do not occur for post hoc methods that use decision-
based error rates (Duncan and Rodger). 
 
IV: The above findings are true whether the null test procedure uses the 
variance ratio distribution or the Studentized range distribution. 
 
V: Though not, strictly speaking, a power matter, discrimination among 
the true μj is hampered if null contrasts are never accepted.  Of course, null 
acceptance has to be at a reasonable degree of approximation, and that 
requires computing (then using) the sample size (N) necessary to detect a 
certain amount of null falsity (say, |g|, as described in this paper), with 
fairly good probability (e.g., Eβ = 0.95). 
 
VI: Limiting post hoc contrast testing to comparisons only (as required in 
the multiple range methods of Duncan and of Newman-Keuls) either 
reduces true discrimination between the means (μj) or requires 
considerable increases in sample size (N) to get around that problem. 
 
VII: Testing H = J-1 pre-planned, linearly independent contrasts (it is 
mathematically impossible to have more than J-1 contrasts that are 
linearly independent of one another) with a conventional, decision-based 
type 1 error rate (especially against specific-sized alternatives), works quite 
well if the contrasts and their alternatives were chosen 'wisely'. That is, the 
false nulls each have a reasonably-sized value (say, g2), and sample size N 
was computed to give fairly good probabilities of false null detection. 
 
VIII: The temptation to "vary one's pre-planned contrast choices" after the 
test data have been examined can be very high, in the light of seeing some 
'now obvious' choices that one "could easily have planned"!  To succumb to 
that temptation amounts to indulgence in post hoc, unplanned t-tests.  
That yields very large type 1 error rates (beyond the conventional α 
asserted), and those unplanned error rates grow ever larger as J increases.  
The results of unplanned, post hoc t-tests continue to be published with 
seemingly little concern for the large 'actual' type 1 error rates, that are 
demonstrated in this paper. 
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IX: Testing H = J-1 pre-planned contrasts with a conventional 
experimentwise type 1 error rate (e.g., α = 0.05), as with the Bonferroni or 
the Dunnett Many-one procedure, reduces the probability of detecting a 
false null contrast considerably (compared to simple, conventional t-tests) 
- though not as badly as the post hoc methods of Scheffé or Tukey. And 
that loss of detection probability grows worse as J increases.  But even 
those facts depend on having chosen one's pre-planned contrasts 'wisely', 
i.e., choosing those contrasts that have sufficient values of g2 to yield 
respectable probabilities of detection. 
 
X: The last method considered was Fisher's LSD procedure.  This post hoc 
method uses a mixture of conventional, experimentwise type 1 error rate 
(e.g., α = 0.05) and a 'supposed' conventional decision-based type 1 error 
rate (e.g., supposedly α = 0.05). The use of the experimentwise basis, 
exactly like the Scheffé method, makes the probability of detecting a false 
null contrast diminish as J increases.  If the method rejects H0 because Fm 
≥ Fα;ν1,ν2 then t-tests are used to choose which contrasts to declare 
‘significant’ - using, in effect, t2 = Fα;1,ν2.  That amounts to unplanned t-
tests on the means; so true null contrasts across the μj (that still remain) 
are at high risk of erroneous null rejection (well beyond the 'supposed' α 
asserted).  The pattern of reduced detection rates for some false null 
contrasts, combined with greatly elevated type 1 error rate for other true 
null contrasts, is not a type of yo-yo procedure that recommends itself! 
 
XI: Planned t-tests, Duncan’s method and Rodger’s procedure are the only 
forms of analysis that unpick true differences among the μj (using the 
sample mj) at a reasonable rate, for moderate-sized effects, with practical 
sample sizes (N).  But Duncan’s method is restricted to comparisons, and 
that severely limits the true differences it can find.  Rodger’s scale-free, 
noncentrality parameter g (see {2}, {6}, {15}, {28} and Table 3) makes the 
setting of power (or non-null detection rate) easy. One can pre-set g for 
alternatives to null contrasts, even before one knows what contrasts will be 
decided post hoc.  Making the choice of g and Eβ when designing a study, 
and computing sample size N (see {28}) to yield that Eβ is a procedure 
that is strongly recommended. Of almost equal importance is the 
recommendation that the pre-chosen g and Eβ be reported along with the 
results of one’s research. In that way, readers will not only learn what was 
found, but also how much was sought, at what rate, and what was not 
found.  Those things would be a great help in interpreting reported 
findings, in designing follow-up studies, and in reducing ineffective further 
studies. 
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A Consider having K (e.g., K=12) samples, each from a separate sub-population or each 
having been given a different ‘treatment’, and (for convenience) arrange the means in 
order of size, m1 the smallest to mK the largest. If we test the null hypothesis that all the 
true means μk are equal to one another by analysis of variance, rejecting that null if the 
overall, observed Fm ≥ Fα;K-1,ν2, then α is the ‘experimentwise type 1 error rate’, 
and α is conventional if it is, e.g., 0.05 or 0.01. If the K samples belong to I×J (e.g., 4×3) 
sub-classes, a factorial analysis is then the popular form of analysis. That evaluates the I 
main effect, the J main effect, and the IJ interaction, rejecting the respective nulls if the 
observed FI ≥ Fα;I-1,ν2,  FJ ≥ Fα;J-1,ν2,  FIJ ≥ Fα;(I-1)(J-1),ν2. The α used here is the 
‘familywise type 1 error rate’ for the I, the J and the IJ families, respectively. Also, 
when the Newman-Keuls multiple range method ‘steps in’ to test μ11-μ1 = 0 and μ12-μ2 = 
0 against qα;11,ν2, that α is the ‘familywise type 1 error rate’ for the 11-groups 
families, and it is conventional because Newman-Keuls uses, e.g., α = 0.05 or 0.01.  For 
Duncan the test criterion for the two sub-range comparisons would be the 
unconventional qγ;11,ν2 with γ = 1-0.9510 = 0.40. The formula  γ = 1-0.9510 is a standard 
that is based on the probability (0.05) of making a type 1 error in 10 statistically 
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independent test decisions (though Duncan’s comparisons are not generally statistically 
independent of one another); so Duncan’s method actually uses a ‘decision-based, 
familywise type 1 error rate’ for the 11-groups families. Suppose the investigator had 
a very, very good idea about possible values of the μk and was therefore able to plan to test 
a wise set of K-1 =11 linearly independent null contrasts across the μk, each to be tested by 
a two-tailed t-test (or its equivalent t2 = Fα;1,ν2). That investigator is using a ‘decision-
based type 1 error rate’. The probability of a type 1 error will be α for each of the 11 t-
test decisions (for true nulls). Finally, the Rodgerian would compute r = [Fm/F[Eα];11,ν2] 
≤ 11, then look through the data to find r rejectable null contrasts that each satisfy Fh ≥ 
F[Eα];11,ν2. Those r nulls would be rejected and 11-r others (that did not reach the 
F[Eα];11,ν2 criterion) retained.  All ν1 = 11 contrasts in the decision set would be linearly 
independent of one another (preferably mutually orthogonal) and make reasonable 
scientific sense. That Rodgerian is using a ‘decision-based type 1 error rate’ because, 
over a long series of such investigations in which all the μk are truly equal, the average of 
this investigator’s rate of type 1 error (i.e., the average ratio r/ν1) will be Eα. 
Experimentwise and familywise error rate (α) is the area in the tail of a distribution (or in 
two tails for two-tailed tests). Rodgerian decision-based error rate (Eα) is the weighted 
average of successive probabilities (of r = 0, 1, . . . , ν1) in the F distribution (see Rodger, 
1975a, p. 76 Figure 2 for a diagram and a numeric illustration; 
http://en.wikiversity.org/wiki/Rodger’s_Method for more numbers; and Rodger, 1975b, 
p. 230 Figure 1 for diagrams on both Eα and Eβ).  Taking a distribution by its tail (α) is a 
procedure that can be somewhat unstable (non-robust) when all the assumptions are not 
quite met, but grasping the distribution around its middle (for Rodger’s Eα and Eβ) is 
more stable – what’s not to love about that? 
 
B The language used here (and for most other outcomes described in this paper) to say 
how investigators report on their statistical evaluation of null hypotheses (or null 
contrasts) is very general (and therefore somewhat vague). That is because there is wide 
variation between how investigators make those reports, ranging from statistical 
decisions that say what the investigator believes her/his data indicates is true (at least to 
some, reasonable degree of approximation), all the way to reporting the data themselves 
with little analytic interpretation.  Of course, we all know that statistical analysis is 
subject to error, but that should not preclude the investigators (who are most familiar 
with their data, and how it was collected) from saying what they believe their data 
demonstrate.  Surely that is more likely to encourage scientific progress. 
 
C The fact that using conventional, experimentwise error rates (e.g., α = 0.05 or 0.01) 

results in a notable loss of power (β), for fixed Δm, as J (the number of 'treatment' groups) 
is increased, is a feature of 'fixed effects' statistical designs and analysis.  Exactly the 
opposite happens with 'random effects' (or 'variance components') statistical designs and 
analysis.  Those show a notable increase in power (β), for fixed N and 'treatment' variance 
σ2

τ, as J is increased.  Power for 'fixed effects' is an integral of the noncentral F 
distribution. Power for 'random effects' is an integral of the central F distribution.  For 
example, if we have J = 4 'treatment' temperatures (say, 5°C; 12°C, 14°C and 27°C), a 
'fixed effects' design has chosen those values deliberately, and the analyst wants to know 
which of them differ from which in their measured effect on the variate, and by how 
much. In a 'random effects' design those particular, four temperatures were drawn at 
random from, say, 0°C to 30°C. That analyst has no particular interest in the four 
treatment values that randomization popped up. Her/his interest is in the amount of 
variation (σ2

τ), if any, in the variate measurements that temperature differences generate. 
Notice that the words "if any" constitute a reasonable question when you are unsure 
whether the 'treatment variable' has any effect worth mentioning; so experimentwise 
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error rate is a reasonable criterion.  One wonders whether the popular use of (ill-advised) 
experimentwise error rates (in 'fixed effects' analyses) is a holdover from historical 
confusion! 
 
D Regarding 'how small is small'; suppose we wanted to compare the average standing 
heights of two sub-populations.  One would be a particular type of adult human males 
and the other that same type of adult human females.  We will use a conventional t-test, 
with α = 0.05, to decide on the μm - μf comparison, and we wish to have the probability β 
≥ 0.95 of detecting if the two sub-population means (the μ's) differ by at least |0.1| inches 
(i.e., about 0.25cm).  The data from the McDowell et al. (2008) study, used in Table 3, 

suggests that σ ≈ 11 cm.  Since Δ0.95;1,ν2 ≈ 13 for large ν2, we would require each of our 
two, independent, random samples to be of size N ≈ 50,000.  The small difference sought 
(|g| = 0.016) would have to be quite important, scientifically, to warrant so much work 
and money.  Undoubtedly, there are occasions when α = 1-β is not appropriate, but such 
circumstances are very much a subject-matter concern, not (in general) something 
statistics can settle in principle. 
 
E Cohen (1988, 1992) had been calling upon behavioural scientists since the early 1960s to 
address the matter of power in their research designs, but without much success.  In his 
book (1988) he dealt with at least eight statistical procedures and had a 'different' 
measure of noncentrality for each of them. He also provided separate 'power tables' for 
each of these. The richness of his explanations may have be rather confusing for the 
relatively casual, occasional scientific user.  It is therefore unfortunate on that account, 
but the opportunity was lost to show that all these statistical methods use the same 
noncentral F distribution, with a standard noncentrality parameter.  For example, 
Cohen's parameter d (for t-tests on mean differences) is related to Rodger's, scale-free g 
given here by g2 = d2/2. He defined d = 0.2, 0.5, 0.8 to be 'small', 'medium' and 'large' 
effect sizes.  In g terms those are g = 0.14, 0.35, 0.57 respectively. For controlled 
experimental studies, these are all rather small effects: even Cohen's 'large' effect size is 
not very big.  But Cohen's definitions might be more reasonable for population surveys. 


