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The process of constructing a fixed-length conventional test frequently focuses on 
maximizing internal consistency reliability by selecting test items that are of average 
difficulty and high discrimination (a “peaked” test).  The effect of constructing such a test, 
when viewed from the perspective of item response theory, is test scores that are precise 
for examinees whose trait levels are near the point at which the test is peaked; as 
examinee trait levels deviate from the mean, the precision of their scores decreases 
substantially.  Results of a small simulation study demonstrate that when peaked tests are 
“off target” for an examinee, their scores are biased and have spuriously high standard 
deviations, reflecting substantial amounts of error.  These errors can reduce the 
correlations of these kinds of scores with other variables and adversely affect the results 
of standard statistical tests.  By contrast, scores from adaptive tests are essentially 
unbiased and have standard deviations that are much closer to true values.  Basic 
concepts of adaptive testing are introduced and fully adaptive computerized tests (CATs) 
based on IRT are described.  Several examples of response records from CATs are 
discussed to illustrate how CATs function.  Some operational issues, including item 
exposure, content balancing, and enemy items are also briefly discussed.  It is concluded 
that because CAT constructs a unique test for examinee, scores from CATs will be more 
precise and should provide better data for social science research and applications. 
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 A considerable amount of social science data is obtained using methods 
of psychological measurement.  These methods include tests, inventories, 
and scales used to measure ability, achievement, proficiency, personality, 
attitudes, and a variety of other variables of interest to researchers and 
practitioners in psychology, education, sociology, political science, and 
other disciplines and applications.  The majority of these instruments were 
developed by classical test theory methods. 
 Classical test theory (CTT; e.g., Gulliksen, 1950; Allen & Yen, 
1979/2002) is designed for the development of conventional tests—
measuring instruments that use a fixed set of questions/items that are 
selected based on data from a target group of respondents.  A trial set of 
test items is administered to the group and the resulting data are used for 
an “item analysis,”  in which two types of statistics are typically computed 
for each item: (1) item difficulty, defined as the proportion of respondents 
who answered the item in the keyed (or correct) direction, or for a rating 
scale type of item the mean total score for a given item response; and (2) 
item discrimination, defined as the correlation of the item response with 



WEISS 

  2

total score on the scale to which the item belongs.  The next phase of item 
analysis typically is to select items that have item difficulties (or means) 
near the center of the range of item difficulties.  For dichotomously scored 
items (correct/incorrect, keyed/non-keyed), this means selecting items 
with proportion correct near .50; for rating scale items, it means selecting 
items with mean scores near the center of the rating scale weight range.  
Items with extreme means or proportions are usually deleted from the 
measuring instrument.  The next step in an item analysis is to delete items 
that have low correlations with total scores.   
 The objective of these two steps in a item analysis for conventional 
tests is to increase the internal consistency reliability of the scale or 
instrument, as reflected in indices such as Cronbach’s alpha (Cronbach, 
1951).  This type of reliability is increased by eliminating items with 
extreme difficulties, because these items have low variance and by 
eliminating them the variance of the total score is increased, since the total 
score is based on all items; increasing the variance of total scores relative 
to the number of items increases reliability.  Reliability is also increased by 
eliminating items with low correlations with total score, because internal 
reliability coefficients are proportional to the average item intercorrelation 
and the item-total correlation is proportional to the average correlation of 
an item with the other items.  The process of refining such a measuring 
instrument involves recomputing reliability as these two steps are 
implemented and ending the instrument refinement process when either a 
sufficiently high level of reliability is reached, or eliminating additional 
items results in only trivial increases in reliability.  Reliability in CTT can 
be thought of as “precision” of measurement since a complementary 
function of reliability can be expressed as “standard error of 
measurement.”  Reliability in CTT is computed for a specified set of test 
items from data collected on a particular group of examinees.  It is a single 
value (as is the standard error of measurement derived from it) for that set 
of items measuring that group of individuals. 

A Perspective From Item Response Theory 

 Although these instrument development procedures have been in use 
for almost 100 years, their full implications with respect to the nature of 
the resulting measurements were not evident until the more modern 
methods of item response theory (IRT) became available in the mid 1970s.  
IRT is a family of mathematical models that formalize how individuals 
respond to items in psychological measuring instruments (de Ayala, 2009; 
Embretson & Reise, 2000).  These models include models for 
dichotomously scored items as well as rating scale items and other types of 
items that result in multi-category (polytomous) responses.  IRT includes 
some concepts that are not part of classical test methods, and some of 
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these concepts can be applied to describe the effects of constructing 
instruments using CTT test construction procedures. 
 One of these concepts is test information.  Information in IRT replaces 
the concept of reliability used in CTT.  It can also be interpreted as 
“precision” of measurement, but it differs in several ways from CTT’s 
“precision”—higher information means more precision in differentiating 
two closely contiguous levels of the variable being measured. (In IRT, the 
variable is generally referred to as a “trait” in a very broad sense—it 
represents any unidimensional variable, whether ability, aptitude, 
attitude, or personality variable, and is typically symbolized with the Greek 
letter θ).  Although CTT reliability is a constant for a set of test items 
applied to a group of individuals—every score computed from that set of 
items has the same precision or error of measurement—information in 
IRT is a function that allows precision to vary at different levels of θ.  
Similar to reliability in CTT, test information in IRT can be converted to an 
error of measurement, but that error of measurement is a function of  
level, not a single value.  The standard error of measurement (SEM) 
function is obtained by taking the reciprocal of the square root of 
information at each value of .  Thus, in IRT there is not one SEM for a 
given set of items but rather an infinite number, potentially a different 
value for each potential level of θ based on a given set of items. 
 Figure 1a shows the test information function for a 50-item typically 
constructed conventional test.  The 50 items are highly discriminating 
items that all have item difficulties around .50, resulting in a “peaked” test 
characteristic of conventional test development procedures.  As Figure 1a 
shows, the information is high and maximum at the center of the θ scale (θ 
= 0.0) and drops rapidly as θ moves away from the center.  Figure 1b 
shows the conditional SEM function for the same test.  As the figure 
shows, the SEM is smallest (about 0.12) at the center of the  distribution 
and increases rapidly for examinees with θs above or below the mean, 
becoming greater than 0.50 at  = 1.8.  These observations show that 
conventionally constructed measuring instruments are designed to 
measure well at a point (typically the mean of the score distribution) but, 
because they are based on a fixed set of items selected to measure around 
that point, they measure increasing poorly for individuals whose scores 
deviate from that point, with levels of measurement error increasing 
rapidly with increasing distance from the score mean.  Thus, scores near 
the mean of the distribution are relatively precise, but scores away from 
the mean have considerable error associated with them. 
 
Effects of Measurement Error on Score Variability  
 
 Although not widely understood, measurement error, even in CTT, 
operates to artificially increase score variability, but the increase is due to 
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random factors.  Since random variability (i.e., measurement error) by 
definition is “noise,” the increased variability in CTT test scores can serve 
to lower the correlation of test scores with other variables and also affect  
 

a. Test Information Function 

 (Standard Scores) 

b. Test Standard Error of Measurement Function 

 
 
 
Figure 1.  IRT Functions for a Peaked Conventional Test 
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the results of other statistical analyses using error-laden scores.  Random 
data will not correlate with other variables (as recognized by CTT’s 
“correction for attenuation”), thus reducing the predictive validity of CTT 
scores.  Similarly, random variability increases the “error” terms in tests of 
mean differences and related analyses, also reducing the ability of the 
scores to reflect mean differences in research studies. 
 Figure 2 shows the effect of error of measurement from conventional 
tests on test scores as the examinee’s true trait level deviates from the 
point at which a conventional test is peaked.  These data were derived 
from a small monte-carlo simulation study using a 50-item peaked 
conventional test, similar to that shown in Figure 1, administered to 
examinees at trait ( ) levels distributed closely around the point on a 
standard score scale (mean = 0.0, standard deviation = 1.0) where the test 
was peaked ( = 0.0), and for examinees whose true  levels deviated from 
the test, at  = .60, 1.2, 1.8, and 2.4.  These results are contrasted with 
those from a computerized adaptive test (CAT; discussed below) that also 
administered a 50-item test selected dynamically for each examinee from a 
larger item bank.  Number-correct scores on the conventional test were 
converted to the IRT  (standard score) metric so that they could be 
compared with the true s and the  estimates from the CATs. 
 Figure 2a shows the effects of error of measurement on mean test 
scores expressed as bias—the mean difference between estimated scores 
and true scores.  When the examinee s are clustered around the value 
where the test is peaked ( = 0.0), scores from the peaked conventional 
tests (red bar) are unbiased.  This is also the point at which test 
information is maximum (Figure 1a) and test standard error (Figure 1b) is 
minimum.  When mean   = 0.6, peaked test scores are nearly unbiased.  
However, as test information falls off around     = 1.20 and the test SEM 
doubles, mean bias of the peaked test scores is 0.20.  For mean   = 1.80 
(almost two SDs above the mean), the SEM has quadrupled and the true 
mean is overestimated by 0.50  units.  By contrast, the green bar show 
that the CAT  estimates were essentially unbiased regardless of the  
levels of the examinees. 
 Figure 2b illustrates the effects of conditional errors of measurement 
on the SDs of the converted number-correct scores.  The first bar in each 
set in the figure is the SD of true  (a constant value of about 0.13, 
approximately equivalent to the test SEM at  = 0.0); the second bar is the 
SD of  estimates for CAT; and the third the SD of converted number-
correct scores from the conventional test.  When mean examinee  
matched the difficulty of the test ( = 0.0),   both the conventional test and 
the CAT had essentially equal SDs that slightly over-estimated true .  As  
deviated from 0.0, the SDs for the CAT remained essentially equal, 
reflecting the constant error of measurement characteristic of CATs.  By  



WEISS 

  6

a. Mean Bias 

 

 

 

 

 

 

 

 

 

 

 

 
                                    
                                    

b. Standard Deviations (SD) 

 
Figure 2.  Converted Number-Correct Scores for a Peaked Conventional 
Test and CAT  Estimates at Five Levels of  
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contrast, the SDs of the peaked conventional test increased with increases 
in .  At  = 1.20, the SD of number-correct scores was 0.62—almost five 
times the true SD.  At  = 1.80, the SD of observed number-correct scores 
was 0.76—almost six times the true SDs.  The decline in SD at  = 2.40 is 
due to a ceiling effect on the number-correct scores. 
 These results show substantial bias in number-correct test scores and 
significant artifactual increases in score variability from conventional tests 
when administered to examinees whose trait levels do not match the 
difficulty of the test.  These spurious effects increase as examinees deviate 
from the point at which the test is peaked.  In a given sample of examinees, 
however, the actual effects of errors of measurement of this type will be 
unknown because (1) number-correct scores are not error-free indicators 
of true trait levels, and (2) the true trait distribution is unknown.  
Embretson (1996) and Kang and Waller (2005) also demonstrated, in 
computer simulation, the negative effects on conventional test scores of 
“test inappropriateness”—the “off-target” use of conventional tests—in the 
context of detecting interactions in ANOVA analyses and in moderated 
multiple regression. 
 It is obvious that there can be substantial measurement error in test 
scores from peaked conventional tests and that the error can have serious 
detrimental effects on conclusions drawn from the use of those 
measurements.  By contrast, Figure 2 shows that CATs are not susceptible 
to these effects. 

A Real-Data Example 

Only one study appears to have examined, using real data, the effects of 
the more precise scores of CAT in comparison to those of conventionally 
administered tests.  Gibbons, Weiss, et al. (2008), developed a CAT 
version of a psychiatric scale—the Mood and Anxiety Spectrum Scales 
(MASS)—designed to measure mood and three other important 
psychiatric variables.  The MASS, developed using CTT procedures 
applicable to developing personality inventories, consists of 626 yes/no 
items that result in an overall score and four subscores.  The authors 
applied CAT to the MASS using a bifactor CAT algorithm with maximum 
information item selection, Bayesian  estimation, and a SE = .30 
termination criterion for the general factor.  Results indicated a 95% 
reduction in scale length for the general scale as well reductions of 85% or 
more for each of the four subscales.  
 Scores on the Mood scale were contrasted for two diagnostic groups—
with and without independently determined bipolar disorder.  
Conventional scoring of the 161-item Mood scale resulted in a significant 
difference between the mean scores of the two groups:  t = 3.20, df = 154, 
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p < .003, an effect size of .63 SD units.  By contrast, the CAT required an 
average of only 27 items (an 83% reduction in scale length) and resulted in 
t = 6.00, df = 154, p < .001 for an effect size of 1.19 SD units.  Thus, the 
CAT scores identified an effect almost twice as large as that of the 
conventional scores, as a result of the greater precision of  estimates—due 
to a reduction in error variability—obtained by the CATs. 
 
Basics of Adaptive Testing 
 
Contrary to popular belief, adaptive testing is not new—although CAT is 
obviously relatively recent.  The basic principles of CAT were articulated 
and implemented by Alfred Binet in 1905 in what later became the 
Stanford-Binet IQ test (Binet & Simon, 1905).  By contrast, the 
conventional fixed-form paper-and-pencil test was not widely 
implemented until around 1918 when it was used to efficiently screen 
military results for the U. S. armed forces in World War I (Dubois, 1970).  
Its use then expanded dramatically over the years until the paper-and-
pencil test dominated psychological and educational testing for most of the 
twentieth century. 
 In intelligence testing, the Stanford-Binet adaptive test has been 
considered the “gold standard” against which the vast majority of 
subsequent intelligence tests have been judged.  Binet’s test, individually 
administered by a trained psychologist, incorporates all the characteristics 
of current adaptive tests, but obviously in a different form than 
contemporary CATs.  An adaptive test is comprised of five characteristics 
that differentiate it from conventional tests: 
 

1. It is based on an item bank with test items of known 
psychometric/statistical characteristics.  The item bank is typically 
a wide-ranging bank that covers a defined range of the trait to be 
measured. 

2. Test administration can use information available on a given 
examinee to select a starting point for the examinee in the item 
bank—not all examinees are required to start with the same item or 
item set. 

3. Items are scored as they are administered and a test score can be 
derived from different subsets of items given to different 
examinees.  

4. Some type of rule is used to select subsequent items based on an 
examinee’s scored responses to previous items. 

5. An examinee’s test is ended when a prespecified termination 
criterion is reached—a fixed number of items is not necessarily 
administered to every examinee. 
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As a result of the last four characteristics, an adaptive test is an 
individualized test.  Examinees need not start with the same items, each 
examinee can receive different subsets of items, and examinees can receive 
different numbers of items from the bank.  An adaptive test is dynamic—it 
adjusts the difficulty of the test administered to the trait level of the 
examinee as the test is being administered. 
 
Binet’s Adaptive Test 
 
 Figure 3 is a schematic representation of Binet’s adaptive test 
administered to a single examinee.  The item bank for this hypothetical 
test consists of 210 items organized in 21 “mental age” levels (with 10 
items per level) at half-year intervals from 5 to 15.  Binet defined the 
‘mental age” of a test item as the chronological age of a group of examinees 
who answered his free-response test questions correctly 50% of the time.  
Thus, for example, if approximately 50% of a group of 10-year-old children 
answered a given test item correctly, that item would be placed in the 10-
year old “mental age” group of items; the same item might be too difficult 
for 9-year-old children (only 35% might correctly answer it) or too easy for 
11-year-old children (85% might correctly answer it). 

 
Figure 3.  A Schematic Representation of a Binet Adaptive Test 
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 Given an item bank structured in this way, the first step in 
adminstering the test to a given child is to select a starting level to begin 
the test.  Similar to today’s much more sophisiticated adaptive tests, a 
Binet test allows the use of prior information to select the first item for the 
test—this is the first aspect of adapting the test to a given examinee.  If the 
examiner knows something about the child that is relevant to her/his 
probable performance on the test, that information can be used to select a 
starting level for the test.  In this hypothetical example, although the 
child’s chronological age was 8 years, the examiner might have 
information to indicate that the child is thought of as “bright,” so the test 
was begun at the 9-year mental age level; in the absence of that 
information, the test would likely have started at the 8-year level.  
 Once the starting level is selected, the first item at that level is 
administered and immediately scored, in this case correct (1+).  
Succeeding items at the current level are similarly administered and 
scored, with a result at Mental Age 9 of six out of 10 items correctly 
answered for a proportion correct of 0.6.  At this point, the examiner is 
faced with a second adaptive decision:  Should the test continue by 
administering easier items in a search for the child’s “basal level”—the 
mental age at which the child answers all the items correctly—or should 
more difficult items be administered to attempt to determine the “ceiling 
level”—the mental age level at which all items are answered correctly? 
 In this example, the examiner chose to identify a basal level first, so 
items at the next lower difficulty level (Mental Age 8.5) were administered.  
Each item was scored immediately by the examiner, and the result was a 
proportion correct of 0.70.  Because this result did not identify a basal 
level, the next level of easier items (Mental Age 8.0) was selected and 
those items administered and scored with a resulting 0.80 correct.  
Finally, after further adapting the level of difficulty to the child being 
tested by dropping down one more level of difficulty, the child correctly 
answered all ten items at Mental Age 7.5 and a basal level was established.  
This result indicated to the examiner that it was not necessary to 
administer any easier items, so all items at Mental Age 7 and below (a total 
of 50 items) were skipped for this child. 
 Having identified the child’s basal level, the examiner then proceeded 
to identify the ceiling level—the level of difficulty that identifies the child’s 
upper limit of ability.  Since all items at Mental Ages 7.5 through 9 had 
been administered, the test was adapted by administering items at the 
next available level above Mental Age 9.  Thus, the ten items at Mental Age 
9.5 were administered and scored, with a resulting proportion correct of 
0.20.  Because this level of performance did not identify a ceiling level, 
items of Mental Age 10 were administered.  The resulting 0.0 proportion 
correct identified the ceiling level, and the remaining 100 more difficult 
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items in the bank were not administered.   Finally, a “mental age” score is 
computed by a weighted average of the mental ages of correctly answered 
items, this result is divided by the child’s chronological age, and then is 
multiplied by 100 to arrive at the child’s “I.Q.” 
 The adaptive procedure incorporated into a Binet-type test essentially 
identifies the effective range of item difficulty for each examinee.  
Examinees who are capable of answering more difficult items will be 
administered those items; examinees who are unable to answer difficult 
items will be given easier items.  Thus, different examinees will receive 
different subsets of items drawn from the pre-calibrated item bank and, 
with the exception of incorrect starting levels, will receive a minimum 
number of items that are too difficult for them or those that are too easy.  
As a consequence, adaptive testing is efficient—it administers only those 
items necessary to measure a given examinee and eliminates most items 
that provide little or no information about the examinee’s ability level.  
The efficiency is illustrated in this example:  Without using an adaptive 
procedure, all 210 items would have had to be administered to this child to 
obtain an adequate measure of ability.  But the adaptive testing procedure 
accomplished the measurement objective in only 60 items, eliminating 50 
items that were too easy for the child (and therefore provided no 
information about her/his ability level) and 100 items that were too 
difficult and similarly uninformative.  The resulting 60-item test achieved 
a 71% reduction in test length from administering the entire item bank as a 
fixed-length conventional test. 
 One important characteristic of an adaptive test is that the use of 
variable termination criteria will result in different length tests for 
different examinees.  Figure 4 shows, for three different students whose 
mental age scores were similar, a schematic of the number of items 
administered to each student.  Student A, whose hypothetical response 
record is shown in Figure 3, received items that ranged from Mental Age 
7.5 through 10; Student E received items only for Mental Ages 8.5, 9, and 
9.5; and Student F received items from Mental Ages from 6.5 through 11.5.  
Clearly, Student E is measured with the most precision (his/her score is 
more certain) than either of the other two students, and Student F’s 
mental age score will be the least precise—this student is interacting with 
the item bank in a manner different from the other two students.  Thus, an 
adaptive test can yield not only a score estimate, but an indicator of the 
precision associated with that score. 
 Although Binet’s test has been extremely useful for the purposes for 
which it was developed, it is not without its problems.  First, the test is 
administered individually by a psychologist, making its widespread 
application limited due to cost and the relative unavailability of trained 
administrators.  Second, although it makes efficient use of an item bank, it 
is still inefficient in some respects.  For example, it requires that all items  



WEISS 

  12 

 

Figure 4.  Ranges of Items Administered to Three Students on a Binet-
Type Test 
 
at a given mental age be administered before an adaptation occurs, making 
it only partially adaptive.  As a consequence, if a test administrator 
underestimates (or overestimates) an examinee’s actual mental age by 
several levels, it might require (in the example shown) several blocks of 
ten items before a basal or ceiling level is obtained, thus unnecessarily 
lengthening the test and reducing its efficiency.  Third, although the test 
yields a subjective indicator of the precision of a test score for a given 
examinee, it has no explicit mechanism for controlling score precision. 
 
Fully Adaptive Computerized Adaptive Testing 
 
 The problems with Binet’s tests were resolved with the introduction of 
computers into the testing process in the early 1970s (e.g., Weiss, 1973) 
and have been refined into highly efficient and effective procedures for 
measuring individuals.  Modern fully adaptive CAT is based on item 
response theory (IRT), a family of mathematical models that describe how 
examinees respond to test items of various kinds (e.g., DeAyala, 2009, 
Embretson & Reise, 2000).  These models can be applied to items that are 
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scored correct or incorrect (or “keyed/not-keyed”), items scored by 
assigning partial credit to responses to multiple-choice items, or to rating 
scale items used to measure a wide variety of attitudes, perceptions, and 
personality variables.  By combining IRT with the test delivery capabilities 
of computers, fully adaptive CAT allows item responses to be scored 
immediately and adaptation to occur after each item is administered.  IRT 
also allows scores, and associated error bands for those scores, to be 
calculated after each item is administered and that information can be 
used to select the next item or to end the test for a given examinee. 
 Item bank.  As with the Binet test, the first step in implementing an 
IRT-based CAT is to develop an item bank with psychometric data on the 
items.  In contrast to the Binet bank, however, a fully adaptive CAT item 
bank is not structured, although some forms of partially adaptive CATs use 
structured item banks based on IRT item data (e.g, Chang, Qian, & Ying, 
1999; Chang & van der Linden, 2003; Zenisky, Hambleton, & Luecht, 
2010).  In IRT, test item “difficulty” and “discrimination” are defined 
differently than they are in CTT, but for purposes of CAT are combined 
into an item information function (IIF). Similar to test information 
functions, like that shown in Figure 1a, item information is a function that 
reflects how precisely a single test item measures at various points along 
the  continuum.  Higher information indicates greater precision and low 
information indicates a lack of precision.  Figure 5 shows IIFs for four 
items. The location of the curve along the  axis reflects the difficulty of the 
item.  Thus, Item 1 is the least difficult because it is located at the lower 
(negative) end of the  continuum, and Item 4 is the most difficult.  The 
height of the IIF at its maximum reflects the discrimination of the item—
how well it differentiates between examinees whose true  levels are close 
together; Item 1 is the most discriminating and Item 4 is the least.  A CAT 
item bank for measuring a particular variable might have as many as 200 
or more items, and IIFs are calculated for each item. 
 Starting a CAT.  The second step in implementing a CAT is to 
identify some rule for starting the test for an examinee.  As with the Binet 
test,   the  first  item  to be given to  an   examinee   can  be  based  on  prior  

Figure 5.  IFFs for Four Dichotomously Scored Items 
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information about the examinee, it can be the same for all examinees, or it 
can be randomly selected from a set of items within a limited range of the 
trait continuum.  Prior information, if accurate, will increase the efficiency 
of a CAT; on the other hand, in a fully adaptive CAT, incorrect prior 
information  will  reduce  its  efficiently  only  marginally  since  (as will be 
shown below) CATs can recover quickly from incorrect starting points.  
Consequently, randomly selected starting items will have little effect on 
CATs and will serve to reduce “item exposure,” which can be important in 
CATs that are used to make high-stakes decision about examinees. If a 
constant starting item is used, all examinees will receive the same first 
item and will also see a restricted range of items for the first few items in 
the test.  
 Estimating .  In fully adaptive CAT, an examinee’s  level is 
estimated after each item is administered and immediately scored.  Using 
IRT  estimation methods, an examinee’s   level can be estimated after a 
single item is administered or after two or more items are administered.  
The general method for estimating  in IRT uses maximum likelihood 
estimation (de Ayala, 2009, pp. 347-355).  However, when only one scored 
item response is available at the beginning of a CAT (or, if several items 
have been administered and they have all been answered either correctly 
or incorrectly) the maximum likelihood procedure must be modified 
temporarily in order to obtain a finite  estimate. This modification, which 
temporarily assumes that   for a group of examinees is normally 
distributed, is called Bayesian estimation (de Ayala, pp. 77-79).  The 
Bayesian   estimate after the first item is administered is then used to 
select the next item for that examinee (although sometimes an arbitrary 
increase or decrease in  is used in place of a Bayesian estimate).  If the 
examinee correctly answers the first item (or answers in the keyed 
direction if there is no “correct” answer), the examinee’s  estimate will 
increase; if the answer is not correct (or keyed), the  estimate will 
decrease. 
 The  estimation process continues as new items are selected and 
scored, with  estimated anew after each item response.  Once a mixed 
response pattern is obtained (e.g., 01, where 1 is a correct/keyed response 
and 0 is an incorrect/not-keyed response) the normal distribution 
assumption is no longer required and non-Bayesian maximum likelihood 
estimation is used.  One major advantage of maximum likelihood 
estimation of  is that it takes into account all the information in an 
examinee’s responses in conjunction with all the information available on 
each test item.  Thus, for example, if an examinee correctly answers a 
difficult item, his/her  estimate will increase more than if he/she 
correctly answers an easier items.  Similarly, if an examinee incorrectly 
answers an easy item, his/her  estimate will decrease more than it he/she 
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had incorrectly answered a more difficult item.  As a consequence, IRT 
scoring will provide different   estimates for four items answered 1100 
versus the same items answered 0011—the number-correct score cannot 
differentiate these two examinees, but IRT  estimation will.  A second 
advantage of IRT  estimation is that it will provide a standard error of the 
 estimate each time  is estimated.  These empirical standard errors 
reflect the confidence that the test user can have in a given  estimate and 
can be used to end a CAT for an examinee. 
 Item selection.  As indicated, fully adaptive CAT is differentiated 
from other forms of CAT in that items are selected, administered, and 
scored one at a time,  is estimated after each item is given, and a new 
item is selected to continue the test.  Item selection is based on the IIFs for 
all the unadministered items in the bank.  At each stage of the CAT—i.e., 
after each  estimate—the next item to be selected is the unadministered 
item at the examinee’s current  level that has the highest level of item 
information; this process is known as maximum information item 
selection.  Thus, for a given  estimate, in effect the information available 
from each item given that  estimate is computed and the previously 
unused item (for that examinee) with the highest information is selected 
and administered.  As it turns out, that item is the item that will maximally 
reduce the error of the next  estimate obtained after that item response is 
scored.  This property of the CAT process typically results in two 
outcomes: (1) differences in successive  estimates tend to decrease as 
more items are administered, and (2) the standard errors associated with 
the successive  estimates will tend to decrease and converge throughout 
the CAT. 
 Figure 6 illustrates maximum information item selection for a 
hypothetical set of 10 items (obviously a real item bank will have many 
more items).  Item 9 is the most discriminating item (its IIF has the 
highest peak) and Item 7 is the least discriminating item (its IIF is the 
flattest); Item 10 is the most difficult (it provides information for high  
examinees) and item 1 is the least difficult (it differentiates only among 
low  examinees). The vertical dashed line in Figure 6a shows the starting 
 estimate ( 0̂ ) of 0.0 at the beginning of the CAT.  Of the three items that 

provide non-zero values of information at   = 0.0 (Items 5, 6, and 7), Item 
6 has the maximum amount of information, so that item is selected from 
the bank, administered and scored, and  is estimated (in this case using 
the Bayesian prior distribution), resulting in 1̂ .  In this example, 1̂ = 1.0, 
which resulted from an incorrect response to Item 6. Figure 6b shows the 
item bank after Item 6 has been removed and the vertical dashed line 
indicates that five items—Items 2, 3, 4, 5, and 7—had non-zero 
information at 1̂ , and that Item 4 had the highest IIF at that point.  
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Therefore, Item 4 is displayed, the answer recorded and scored, and  is 
re-estimated.  The figure shows an increase in ̂ (resulting from a correct 
response) to about 2̂ = 0.50, where Figure 6c shows that Item 5 provides 
maximum  information.    The  process  continues—the  selected  item is  
 

a. 10-Item Bank at the Start of a CAT 
            

 
 

b. One item Administered 
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c. Two Items Administered 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Maximum Information CAT Item Selection 
 
administered, scored,  is re-estimated (using all the item responses 
available), and the next item providing maximum information at the 
current   estimate is administered and removed from the bank—until a 
termination criterion is reached. 
 Ending a CAT.  A properly implemented CAT uses a variable 
termination criterion consistent with the purpose of testing.  CATs can be 
used for a number of purposes, including: 

1. Measuring individuals to obtain scores that are used to evaluate the 
examinee’s level of functioning on some trait of interest.  Such 
scores might be used for counseling purposes, clinical evaluation, in 
schools, in a variety of other settings where an individual’s level of 
functioning is important information, or in research studies.  So 
that scores of individuals will be comparable in terms of quality, or 
to minimize the kinds of error variability described above, such 
scores should be of equal precision across individuals. 

2. Classifying individuals based on one or more score cutoff values.  In 
this case, test scores are used to determine if an examinee has 
mastered or not mastered a body of knowledge, has passed or not 
passed a course of study, or qualifies or does not qualify for a 
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particular employment or educational opportunity based on 
knowledge or skills.  Classifications can also be made based on 
multiple score cutoff values, such as in the assignment of school 
grades or proficiency categories. 

3. Measuring individual change, growth, or decline (or lack thereof).  
In this type of application, precise scores are necessary at two or 
more time points to obtain accurate measures of change. 

 
 The termination criterion applied in a fully adaptive CAT will differ for 
each of these three testing applications.  When the objective is to measure 
each examinee to the same degree of precision, CATs are typically ended 
when the observed standard error associated with the  estimates reaches 
a predefined value.  Thus, for example, a CAT can be ended when every 
examinee’s SEM is less than or equal to 0.25.  This would result in  
estimates that had 95% confidence intervals that spanned a half  unit in 
either direction , e.g., a  estimate of 1.0 would have a (95%) error band 
that ranged from 0.5 to 1.5.  Because of variations in the information 
structure of an item bank at various levels of , and because of individual 
differences in the consistency with which examinees answer test items, 
obtaining such equiprecise measurements will require that the number of 
items administered to each examinee be allowed to vary.  
 Testing for classification uses a different CAT termination criterion.  
After a cutoff score has been expressed on the  scale, and a desired level 
of classification accuracy is determined, each successive  estimate in a 
CAT is bounded by the appropriate SEM error band.  For example, if a 
95% confidence classification is desired, the error band would be 2 
standard errors.  As each item is administered,  is re-estimated and the 
new error band constructed around it.  Testing continues until (after some 
prespecified minimum number of items) the error band for a  estimate is 
entirely above the cutoff score or below it.  When this occurs, a “high 
confidence” decision can be made from the CAT results, which will be 
equal to or better than the prespecified level of classification accuracy.  
Again, to obtain this objective, the number of items administered to each 
examinee must be permitted to vary.  
 Measuring individual change has been particularly troublesome in 
psychological measurement due to the unreliability of change scores (e.g., 
Cronbach & Furby, 1970) and floor and ceiling effects that occur with 
scores from conventional tests.  Using CAT with a specialized termination 
criterion can result in measures of change that have properties that better 
capture change than do scores from conventional tests (Kim-Kang & 
Weiss, 2008).  In this application, a CAT termination criterion can use the 
SEM bands from a Time 2 CAT compared to those from a Time 1 CAT 
obtained from the same examinee to determine if significant change has 
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occurred.  The Time 2 CAT can be ended when the two error bands no 
longer overlap, indicating that significant change has occurred, or when a 
sufficient number of items has been administered and it becomes clear 
that significant change has not occurred (Nydick & Weiss, 2010).   Again, 
because of wide individual differences in test performance among 
examinees, combined with individual variations in magnitudes of change, 
CAT test length must be allowed to vary across examinees.  Finkelman, 
Weiss, and Kim-Kang (2010) proposed and evaluated hypothesis testing 
methods for evaluating individual change and the accuracies of those 
methods using variable terminating CATs. 
 
Putting It All Together: Examples of Fully Adaptive CATs 
 
 Equiprecise CAT.  Figure 7 shows a sample CAT report from a CAT 
designed to measure each examinee to a pre-specified level of precision 
(minimum SEM of .20).   To keep the test to a reasonable length, a 
maximum of 40 items was specified.  In this particular test, the test was 
terminated when the 40-item maximum was reached. 
 The report is a graphic plot of the examinee’s progress through the CAT 
after each item has been administered.  A “C” for an item plotted at the 
current  estimate indicates that the item was answered correctly; an “I” 
indicates that the item was answered incorrectly.  The dashed lines 
represent a two SEM band around the  estimate.   The beginning  for 
this CAT (represented by an “X” at   = −0.24) was based on a randomly 
selected  in the range ±1.0.  Rather than using a Bayesian  estimate after 
the first item was answered, this CAT used an alternate method—the most 
difficult item in the bank was administered to attempt to force a mixed 
response pattern so that maximum likelihood estimation could be used.  
Since Item 2 was also answered correctly, the next most difficult item was 
administered, which was answered incorrectly. 
 As Figure 7 shows, generally, a correct answer is followed by an 
increase in the  estimate and an incorrect answer is followed by a 
decrease in the  estimate.  The figure also shows the convergence in  
estimates—the differences between successive  estimates are large at the 
beginning of the CAT and tend to become smaller as the CAT progresses. 
With a few exceptions, the SEM tends to decrease as each item is answered 
and the differences between successive  estimates tend to decrease as 
more items are answered. The figure also shows that the CAT began to 
converge after about Item 10, with changes in  estimates occurring in the 
first decimal place.  Similar to the Binet adaptive test, the CAT selected the 
most appropriate range of items from the bank for this examinees—except 
for the first eight items, all items administered to this examinee were items 
that would be answered correctly about 50% of the time by examinees 
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whose s were between 0.9 and 1.75.  More difficult items and easier items 
in the bank were not administered to this examinee.  
 
 

This test will terminate when the standard error of theta is equal to or less than 0.200 
Minimum number of items = 5        Maximum number of items = 40 

Theta was estimated by maximum likelihood. 
 
 Examinee Name : John Q. Public 
  

The standard error band plotted as ---- is plus or minus 2.00 standard errors. 
X = Initial theta value    C = Correct answer    I = Incorrect answer 

 
  Item  Theta   SE   -3.......-2........-1.........0........+1........+2........+3 
  0  -0.24* 1.00*        --------------------X-------------------- 
  1   4.00* 1.00*                               .         --------------------> 
  2   4.00* 1.00*                               .         --------------------> 
  3   2.52  0.84                                .       -----------------I----- 
  4   2.77  0.68                                .             -------------C--- 
  5   2.38  0.61                                .          ------------I------- 
  6   2.09  0.61                                .       ------------I---------- 
  7   1.49  0.89                             -----------------I---------------- 
  8   0.36  1.00               --------------------I-------------------- 
  9   0.88  0.63                            ------------C------------- 
 10   1.13  0.56                                -----------C----------- 
 11   1.34  0.49                                .  ----------C---------- 
 12   1.44  0.46                                .    ---------C--------- 
 13   1.55  0.43                                .     ---------C--------- 
 14   1.67  0.41                                .       --------C-------- 
 15   1.54  0.38                                .      --------I-------- 
 16   1.60  0.36                                .       --------C------- 
 17   1.70  0.35                                .        -------C------- 
 18   1.76  0.34                                .         -------C------- 
 19   1.65  0.32                                .         ------I------ 
 20   1.52  0.31                                .       -------I------ 
 21   1.40  0.30                                .      -------I------ 
 22   1.27  0.30                                .     ------I------ 
 23   1.30  0.28                                .      ------C----- 
 24   1.32  0.28                                .      ------C----- 
 25   1.36  0.27                                .       -----C------ 
 26   1.40  0.27                                .       -----C------ 
 27   1.31  0.26                                .      ------I----- 
 28   1.34  0.25                                .       -----C----- 
 29   1.37  0.25                                .       -----C----- 
 30   1.40  0.24                                .        ----C----- 
 31   1.43  0.24                                .        -----C----- 
 32   1.46  0.24                                .        -----C----- 
 33   1.50  0.24                                .         ----C----- 
 34   1.53  0.23                                .         -----C---- 
 35   1.55  0.23                                .         -----C----- 
 36   1.59  0.23                                .          ----C----- 
 37   1.62  0.23                                .          -----C---- 
 38   1.58  0.22                                .          ----I----- 
 39   1.53  0.22                                .         -----I---- 
 40   1.55  0.22                                .          ----C---- 

 *Arbitrarily assigned value. 
 The final theta estimate based on 40 items was 1.55 with a standard error of 0.22, resulting 
        in a 2.00 standard error band of 1.11 to 1.99 
 This test was terminated when the maximum number of items was reached. 

 
 

Figure 7.  A Sample Report on an IRT-Based Adaptive Test 
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 Figure 8 shows the results of an equiprecise CAT for a different 
examinee.  The entry  estimate for this test was   = 0.0 and the first item 
was correctly answered.  As a consequence, the second item was again the 
most difficult item in the bank, which was answered incorrectly resulting 
in a maximum likelihood  estimate of 0.11 and an SEM = 0.52.  This  
estimate was then used to select Item 3.  The CAT response record shows a 
quick convergence of the  estimates for this examinee accompanied by a 
rapid reduction in the SEMs.  Had the test used a termination SEM of 
0.20, the CAT could have been terminated after 17 items with a  estimate 
that differed from the 30-item  estimate in the second decimal place; an 
SEM termination value of 0.25 would have terminated the CAT after 9 
items with a  estimate of −0.25, which is very close to the 30-item   of  
−0.21.   Because  the  final   estimate  after the  limit  of 30 items was  very 
 
 
Item  Theta   SE   -3.......-2........-1.........0........+1........+2........+3 
  0   0.00*  1.00*           --------------------X--------------------           
  1   4.00*  1.00*                               .          --------------------> 
  2   0.11   0.52                      -----------I----------                    
  3   0.20   0.45                        ----------C---------                    
  4  -0.04   0.35                        -------I-------                         
  5   0.05   0.32                          ------C------                         
  6  -0.13   0.29                        ------I------                           
  7  -0.07   0.27                         ------C-----                           
  8  -0.18   0.25                         -----I-----                            
  9  -0.25   0.25                        -----I-----                             
 10  -0.18   0.23                         -----C----                             
 11  -0.27   0.23                        -----I----                              
 12  -0.21   0.22                         ----C-----                             
 13  -0.26   0.22                         ----I----                              
 14  -0.34   0.22                        ----I-----                              
 15  -0.37   0.22                       -----I----                               
 16  -0.33   0.20                        ----C----                               
 17  -0.29   0.19                         ----C---                               
 18  -0.33   0.19                        ----I----                               
 19  -0.38   0.19                        ----I----                               
 20  -0.34   0.18                        ----C----                               
 21  -0.30   0.18                         ----C---                               
 22  -0.27   0.17                         ----C---                               
 23  -0.29   0.17                         ----I---                               
 24  -0.26   0.17                          ---C---                               
 25  -0.28   0.16                         ----I---                               
 26  -0.30   0.16                         ----I---                               
 27  -0.27   0.16                          ---C---                               
 28  -0.25   0.15                          ---C---                               
 29  -0.23   0.15                          ---C---                               
 30  -0.21   0.15                          ---C---                 

 *Arbitrarily assigned value. 
 The final theta estimate based on 30 items was -0.21 with a standard  error of 0.15, resulting  
        in a 2.00 standard error band  of -0.51 to 0.08 
 
 

Figure 8.  A Sample Report on an IRT-Based Adaptive Test for a 
Different Examinee 
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close to the  starting value of  = 0.0, a very narrow range of items was 
administered to this examinee from the larger CAT bank—with the 
exception of the second item, items administered were those appropriate 
for examinees with s between 0.20 and –0.38.  This response record also 
illustrates another feature of most CATS:  Excluding the first few items in a 
CAT, the proportion correct for the majority of examinees will converge to 
p = 0.50.  Excluding the first two items (which were not based on 
estimated ), 15 of 28 items were correctly answered for a proportion of 
0.54.   
 
Classification CAT.  Figure 9 shows a response record resulting from a 
CAT designed to make a dichotomous classification.  For this purpose, the 
CAT was implemented similarly to those in Figures 7 and 8, except for the 
termination criterion.  The test was designed to end when the SEM band 
surrounding a  estimate fell below a prespecified  cutoff value.  The SEM 
error band in this case was ±1 SEM (resulting in a 68% two-tailed 
confidence interval) and the cutoff value was  = +1.0 (as indicated by the 
vertical dashed line in the figure).  A minimum of 10 items was specified to 
avoid premature test termination and a maximum of 50 items was 
specified to avoid excessive testing times. 
 As with the CATs in Figures 7 and 8, the first item (based on a starting 
 = 0.0) was answered correctly and three of the most difficult items in the 
bank were given until an incorrect answer was obtained.  Two incorrect 
answers then were followed by a string of responses essentially alternating 
between correct responses to less difficult items and incorrect responses to 
slightly more difficult items. As a consequence, the examinee’s  estimates 
slowly decreased from an estimated high of  = 2.66 to a low of 0.55 at 
Item 25. At Item 25, the  estimate and the specified SEM band were 
completely below the cutoff value of  = 1.0, and the test was terminated.  
Note that the SEM value at termination was 0.43, which is fairly high, but 
it was not necessary to continue the test to reduce the SEM, since for 
classification purposes the test’s termination criterion was met.  The 
results show that the  estimates were beginning to converge at around 
Item 21 and the SEMs began to display convergence (albeit at a high value) 
at Item 12.  This response record also illustrates a phenomenon not 
evident in the other two response records:  The SEMs in Figure 9 
increased slightly at Items 17, 19, 21, 23, and 25, suggesting that the 
examinee was not entirely responding in accordance with the IRT model 
used to estimate .  This result partially accounts for the relatively high 
SEM observed after 25 items. 
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This test terminated when the theta estimate plus or minus 1.00 standard errors  
was above or below a theta cutoff of  1.00. 

Minimum number of items =  10       Maximum number of items = 50 
Theta was estimated by maximum likelihood. 

The standard error band plotted as ---- is plus or minus 1.00 standard errors. 
X= Initial theta value    C = Correct answer     I = Incorrect answer 

 
  Item  Theta  SE   -3.......-2........-1.........0........+1........+2........+3 
  0   0.00* 1.00*                     ----------X---------|                     
  1   4.00* 1.00*                               .         |         ----------> 
  2   4.00* 1.00*                               .         |         ----------> 
  3   4.00* 1.00*                               .         |         ----------> 
  4   2.66  1.00*                               .         |     ----------I---- 
  5   1.87  0.94                                .        -|-------I----------   
  6   2.02  0.78                                .         | --------C-------    
  7   1.34  0.56                                .      ---|--I------            
  8   1.43  0.53                                .        -|---C-----            
  9   1.24  0.49                                .      ---|-I-----              
 10   1.33  0.48                                .       --|--C-----             
 11   1.12  0.47                                .     ----|I----                
 12   1.16  0.44                                .      ---|C-----               
 13   1.01  0.44                                .    -----I----                 
 14   1.06  0.43                                .     ----C----                 
 15   0.92  0.43                                .   -----I|---                  
 16   0.97  0.42                                .    ----C|---                  
 17   0.79  0.44                                .  ----I--|--                   
 18   0.84  0.42                                .   ----C-|--                   
 19   0.72  0.43                                . -----I--|-                    
 20   0.75  0.42                                .  ----C--|-                    
 21   0.63  0.44                                .-----I---|                     
 22   0.65  0.42                                . ----C---|                     
 23   0.58  0.43                                .----I----|                     
 24   0.61  0.42                                .-----C---|                     
 25   0.55  0.43                                .----I----|                     
 
 *Arbitrarily assigned value.  These values were not used to terminate the test. 
  The final theta estimate based on 25 items was 0.55 with a standard error of 0.43, resulting 
         in a 1.00 standard error band of  0.13 to  0.98. 
  The error band around the theta estimate did not overlap the cutoff score of 1.00, resulting in  
        a high-confidence dichotomous classification. 
  The final theta estimate is below the cutoff score of 1.00 

 
 

Figure 9.  CAT Response Record for a Dichotomous Classification CAT 
 
Constrained CAT 
 
 The fully adaptive CATs illustrated above are unconstrained.  That is, 
items are selected based only on maximum information at the current  
estimate at each stage of the CAT.  In some applications of CAT, however, 
item selection has to be constrained by incorporating non-psychometric 
criteria into the item selection process.  The major types of constraints 
applied include item exposure, content balancing, and “enemy” items. 
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 Item exposure becomes an issue in CAT when tests are used to make 
decisions about individuals that have important consequences for those 
individuals.  Thus, when tests are used to select individuals for entry into a 
college or university, for admission into special programs that might 
benefit the individual financially, for hiring into a particular job or 
position, or for licensure or certification, such “high-stakes” consequences 
sometimes motivate examinees to attempt to obtain information on test 
items so that they can enhance their scores.  Because CAT testing 
programs tend to be continuous—tests are given to examinees over a long 
time period—examinees who have taken a CAT might remember some test 
items and make that information available to examinees who subsequently 
take the test.  To minimize this potential problem, item selection based on 
item information can be constrained to (probabilistically) “expose” each 
item to some maximum proportion of examinees (see Georgiadou, 
Triantafilou, & Economides, 2007, for a comprehensive review of item 
exposure control methods).  As a consequence, more items are used from a 
given item bank, but no items will be seen by all or a large number of 
examinees. 
 Some tests, although developed to meet the unidimensionality 
assumption required for the use of most IRT models to implement CAT, 
consist of items that vary in content characteristics.  For example, a 
mathematics test used to measure math achievement in the early school 
grades might consist of items measuring addition, subtraction, 
multiplication, and division.  Similarly, a depression scale might include 
items that reflect various aspects of depression (e.g. dysfunction in 
cognition, overt behavior, or mood, and somatic symptoms).  In both 
cases, different item content might have different levels of difficulty, yet 
the scale is unidimensional.  For certain applied purposes, it might be 
important to ensure that for a given examinee their CAT includes a 
proportionate sampling of items from each of the content domains.  Thus, 
CATs can be constrained to provide (approximate) pre-defined 
proportions of items from content domains that comprise the CAT item 
bank.  Kingsbury and Zara (1989, 1991) provide a review of some methods 
to achieve content balancing. 
 A third type of constraint frequently implemented in CAT is that of 
eliminating “enemy items.”  In some testing situations, some items in the 
bank provide clues that might be useful in answering other items; or some 
items might be very similar to other items (e.g., minor rewordings) so that 
their administration to a given examinee would be redundant, as well as 
violating the assumption of local independence that underlies IRT-based 
CAT—that the responses to test items are independent of each other except 
for their reliance on the trait that underlies the set of items.  To control for 
enemy items, a CAT can include a list of subsets of items that should not 
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be administered together.  If an examinee answers any item in the subset, 
none of the other items in that set are administered to that examinee. 
 Unconstrained CATs will be the most efficient, so item selection 
constraints are generally used only as required in a particular CAT.  
Because any constraints imposed in a CAT will result in the selection of 
items that are suboptimal from a psychometric point of view (i.e., provide 
less information and, therefore, result in less rapid convergence of  
estimates), unless an item bank has many items that are replicates or near 
replicates of each other in terms of item information, constrained CATs 
will typically require the administration of more items to achieve the same 
degree of measurement precision or classification accuracy than 
unconstrained CATs. 

 
Conclusions 

 
 Conventional peaked tests, developed using last century’s methods of 
instrument construction, can measure well if—and only if—an examinee’s 
level on a trait matches the region of the trait where the test is peaked.  
However, the purpose of measurement is to determine where an 
examinee’s trait level is located on the trait, and it cannot be known in 
advance.  As demonstrated above, as the examinee’s trait level deviates 
from the test’s location, measurement becomes extremely poor with very 
large errors of measurement.  These errors of measurement result in 
conventional score variabilities that are artificially inflated by random 
error, reducing the utility of the scores for use in the most simple—as well 
as the most complex—statistical analyses.  Error-laden standard deviations 
and variances will reduce the power of t tests or complex analyses of 
variance to detect differences in means and will similarly introduce error 
into all types of correlational analyses. 
 Computerized adaptive testing provides a viable solution to these 
problems.  Because CATs are dynamic, adjusting the test to each examinee 
as the test is administered, they are both efficient and effective.  CATs are 
effective because they essentially deliver a peaked test to each examinee; 
that is, they quickly adapt to the examinees’s trait level as the test is being 
delivered to identify the subset of items in a pre-calibrated item bank that 
will best measure each examine.  That subset of items is the subset on 
which the examinee will get about 50% of the items correct.  Because fully 
adaptive CAT selects items by maximum item information at the current 
trait estimate, they will also be efficient—they will use a minimum number 
of items to measure each examinee to a minimum standard error of 
measurement or to a predetermined degree of precision required for a 
particular application.  As demonstrated above, CATs function well (e.g., 
with equal precision) for examinees at all levels of a trait. 
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 Developing a CAT is more complex than developing a conventional 
test.  They require relatively large item banks that are calibrated with IRT, 
and because they require certain decisions to be made that interact with 
the structure of an item bank, require the use of software such as CATSim 
(Weiss & Guyer, 2010) for proper design prior to implementing them. 
Thompson and Weiss (2011) provide an overview of the steps necessary to 
develop a CAT.  But in spite of the increased complexity, the better 
measurements provided by CAT, and the resulting more accurate and 
precise data, are very likely to result in more meaningful research 
conclusions (as well as better decisions made based on individual 
measurement data) than are error-laden measurements from “off-target” 
peaked conventional tests. 
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